v8
V8 is Google’s open source high-performance JavaScript and WebAssembly engine, written in C++.
Loading...
Searching...
No Matches
bignum.cc
Go to the documentation of this file.
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
6
7#include "src/base/strings.h"
8
9namespace v8 {
10namespace base {
11
13 : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
14 for (int i = 0; i < kBigitCapacity; ++i) {
15 bigits_[i] = 0;
16 }
17}
18
19template <typename S>
20static int BitSize(S value) {
21 return 8 * sizeof(value);
22}
23
24// Guaranteed to lie in one Bigit.
25void Bignum::AssignUInt16(uint16_t value) {
27 Zero();
28 if (value == 0) return;
29
31 bigits_[0] = value;
32 used_digits_ = 1;
33}
34
35void Bignum::AssignUInt64(uint64_t value) {
36 const int kUInt64Size = 64;
37
38 Zero();
39 if (value == 0) return;
40
41 int needed_bigits = kUInt64Size / kBigitSize + 1;
42 EnsureCapacity(needed_bigits);
43 for (int i = 0; i < needed_bigits; ++i) {
44 bigits_[i] = static_cast<Chunk>(value & kBigitMask);
45 value = value >> kBigitSize;
46 }
47 used_digits_ = needed_bigits;
48 Clamp();
49}
50
51void Bignum::AssignBignum(const Bignum& other) {
52 exponent_ = other.exponent_;
53 for (int i = 0; i < other.used_digits_; ++i) {
54 bigits_[i] = other.bigits_[i];
55 }
56 // Clear the excess digits (if there were any).
57 for (int i = other.used_digits_; i < used_digits_; ++i) {
58 bigits_[i] = 0;
59 }
60 used_digits_ = other.used_digits_;
61}
62
63static uint64_t ReadUInt64(Vector<const char> buffer, int from,
64 int digits_to_read) {
65 uint64_t result = 0;
66 int to = from + digits_to_read;
67
68 for (int i = from; i < to; ++i) {
69 int digit = buffer[i] - '0';
70 DCHECK(0 <= digit && digit <= 9);
71 result = result * 10 + digit;
72 }
73 return result;
74}
75
77 // 2^64 = 18446744073709551616 > 10^19
78 const int kMaxUint64DecimalDigits = 19;
79 Zero();
80 int length = value.length();
81 int pos = 0;
82 // Let's just say that each digit needs 4 bits.
83 while (length >= kMaxUint64DecimalDigits) {
84 uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
88 AddUInt64(digits);
89 }
90 uint64_t digits = ReadUInt64(value, pos, length);
92 AddUInt64(digits);
93 Clamp();
94}
95
96static int HexCharValue(char c) {
97 if ('0' <= c && c <= '9') return c - '0';
98 if ('a' <= c && c <= 'f') return 10 + c - 'a';
99 if ('A' <= c && c <= 'F') return 10 + c - 'A';
100 UNREACHABLE();
101}
102
104 Zero();
105 int length = value.length();
106
107 int needed_bigits = length * 4 / kBigitSize + 1;
108 EnsureCapacity(needed_bigits);
109 int string_index = length - 1;
110 for (int i = 0; i < needed_bigits - 1; ++i) {
111 // These bigits are guaranteed to be "full".
112 Chunk current_bigit = 0;
113 for (int j = 0; j < kBigitSize / 4; j++) {
114 current_bigit += HexCharValue(value[string_index--]) << (j * 4);
115 }
116 bigits_[i] = current_bigit;
117 }
118 used_digits_ = needed_bigits - 1;
119
120 Chunk most_significant_bigit = 0; // Could be = 0;
121 for (int j = 0; j <= string_index; ++j) {
122 most_significant_bigit <<= 4;
123 most_significant_bigit += HexCharValue(value[j]);
124 }
125 if (most_significant_bigit != 0) {
126 bigits_[used_digits_] = most_significant_bigit;
127 used_digits_++;
128 }
129 Clamp();
130}
131
132void Bignum::AddUInt64(uint64_t operand) {
133 if (operand == 0) return;
134 Bignum other;
135 other.AssignUInt64(operand);
136 AddBignum(other);
137}
138
139void Bignum::AddBignum(const Bignum& other) {
140 DCHECK(IsClamped());
141 DCHECK(other.IsClamped());
142
143 // If this has a greater exponent than other append zero-bigits to this.
144 // After this call exponent_ <= other.exponent_.
145 Align(other);
146
147 // There are two possibilities:
148 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
149 // bbbbb 00000000
150 // ----------------
151 // ccccccccccc 0000
152 // or
153 // aaaaaaaaaa 0000
154 // bbbbbbbbb 0000000
155 // -----------------
156 // cccccccccccc 0000
157 // In both cases we might need a carry bigit.
158
159 EnsureCapacity(1 + std::max(BigitLength(), other.BigitLength()) - exponent_);
160 Chunk carry = 0;
161 int bigit_pos = other.exponent_ - exponent_;
162 DCHECK_GE(bigit_pos, 0);
163 for (int i = 0; i < other.used_digits_; ++i) {
164 Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
165 bigits_[bigit_pos] = sum & kBigitMask;
166 carry = sum >> kBigitSize;
167 bigit_pos++;
168 }
169
170 while (carry != 0) {
171 Chunk sum = bigits_[bigit_pos] + carry;
172 bigits_[bigit_pos] = sum & kBigitMask;
173 carry = sum >> kBigitSize;
174 bigit_pos++;
175 }
176 used_digits_ = std::max(bigit_pos, used_digits_);
177 DCHECK(IsClamped());
178}
179
180void Bignum::SubtractBignum(const Bignum& other) {
181 DCHECK(IsClamped());
182 DCHECK(other.IsClamped());
183 // We require this to be bigger than other.
184 DCHECK(LessEqual(other, *this));
185
186 Align(other);
187
188 int offset = other.exponent_ - exponent_;
189 Chunk borrow = 0;
190 int i;
191 for (i = 0; i < other.used_digits_; ++i) {
192 DCHECK((borrow == 0) || (borrow == 1));
193 Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
194 bigits_[i + offset] = difference & kBigitMask;
195 borrow = difference >> (kChunkSize - 1);
196 }
197 while (borrow != 0) {
198 Chunk difference = bigits_[i + offset] - borrow;
199 bigits_[i + offset] = difference & kBigitMask;
200 borrow = difference >> (kChunkSize - 1);
201 ++i;
202 }
203 Clamp();
204}
205
206void Bignum::ShiftLeft(int shift_amount) {
207 if (used_digits_ == 0) return;
208 exponent_ += shift_amount / kBigitSize;
209 int local_shift = shift_amount % kBigitSize;
211 BigitsShiftLeft(local_shift);
212}
213
214void Bignum::MultiplyByUInt32(uint32_t factor) {
215 if (factor == 1) return;
216 if (factor == 0) {
217 Zero();
218 return;
219 }
220 if (used_digits_ == 0) return;
221
222 // The product of a bigit with the factor is of size kBigitSize + 32.
223 // Assert that this number + 1 (for the carry) fits into double chunk.
225 DoubleChunk carry = 0;
226 for (int i = 0; i < used_digits_; ++i) {
227 DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
228 bigits_[i] = static_cast<Chunk>(product & kBigitMask);
229 carry = (product >> kBigitSize);
230 }
231 while (carry != 0) {
233 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
234 used_digits_++;
235 carry >>= kBigitSize;
236 }
237}
238
239void Bignum::MultiplyByUInt64(uint64_t factor) {
240 if (factor == 1) return;
241 if (factor == 0) {
242 Zero();
243 return;
244 }
246 uint64_t carry = 0;
247 uint64_t low = factor & 0xFFFFFFFF;
248 uint64_t high = factor >> 32;
249 for (int i = 0; i < used_digits_; ++i) {
250 uint64_t product_low = low * bigits_[i];
251 uint64_t product_high = high * bigits_[i];
252 uint64_t tmp = (carry & kBigitMask) + product_low;
253 bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
254 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
255 (product_high << (32 - kBigitSize));
256 }
257 while (carry != 0) {
259 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
260 used_digits_++;
261 carry >>= kBigitSize;
262 }
263}
264
266 const uint64_t kFive27 = 0x6765'C793'FA10'079D;
267 const uint16_t kFive1 = 5;
268 const uint16_t kFive2 = kFive1 * 5;
269 const uint16_t kFive3 = kFive2 * 5;
270 const uint16_t kFive4 = kFive3 * 5;
271 const uint16_t kFive5 = kFive4 * 5;
272 const uint16_t kFive6 = kFive5 * 5;
273 const uint32_t kFive7 = kFive6 * 5;
274 const uint32_t kFive8 = kFive7 * 5;
275 const uint32_t kFive9 = kFive8 * 5;
276 const uint32_t kFive10 = kFive9 * 5;
277 const uint32_t kFive11 = kFive10 * 5;
278 const uint32_t kFive12 = kFive11 * 5;
279 const uint32_t kFive13 = kFive12 * 5;
280 const uint32_t kFive1_to_12[] = {kFive1, kFive2, kFive3, kFive4,
281 kFive5, kFive6, kFive7, kFive8,
282 kFive9, kFive10, kFive11, kFive12};
283
284 DCHECK_GE(exponent, 0);
285 if (exponent == 0) return;
286 if (used_digits_ == 0) return;
287
288 // We shift by exponent at the end just before returning.
289 int remaining_exponent = exponent;
290 while (remaining_exponent >= 27) {
291 MultiplyByUInt64(kFive27);
292 remaining_exponent -= 27;
293 }
294 while (remaining_exponent >= 13) {
295 MultiplyByUInt32(kFive13);
296 remaining_exponent -= 13;
297 }
298 if (remaining_exponent > 0) {
299 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
300 }
301 ShiftLeft(exponent);
302}
303
305 DCHECK(IsClamped());
306 int product_length = 2 * used_digits_;
307 EnsureCapacity(product_length);
308
309 // Comba multiplication: compute each column separately.
310 // Example: r = a2a1a0 * b2b1b0.
311 // r = 1 * a0b0 +
312 // 10 * (a1b0 + a0b1) +
313 // 100 * (a2b0 + a1b1 + a0b2) +
314 // 1000 * (a2b1 + a1b2) +
315 // 10000 * a2b2
316 //
317 // In the worst case we have to accumulate nb-digits products of digit*digit.
318 //
319 // Assert that the additional number of bits in a DoubleChunk are enough to
320 // sum up used_digits of Bigit*Bigit.
321 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
323 }
324 DoubleChunk accumulator = 0;
325 // First shift the digits so we don't overwrite them.
326 int copy_offset = used_digits_;
327 for (int i = 0; i < used_digits_; ++i) {
328 bigits_[copy_offset + i] = bigits_[i];
329 }
330 // We have two loops to avoid some 'if's in the loop.
331 for (int i = 0; i < used_digits_; ++i) {
332 // Process temporary digit i with power i.
333 // The sum of the two indices must be equal to i.
334 int bigit_index1 = i;
335 int bigit_index2 = 0;
336 // Sum all of the sub-products.
337 while (bigit_index1 >= 0) {
338 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
339 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
340 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
341 bigit_index1--;
342 bigit_index2++;
343 }
344 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
345 accumulator >>= kBigitSize;
346 }
347 for (int i = used_digits_; i < product_length; ++i) {
348 int bigit_index1 = used_digits_ - 1;
349 int bigit_index2 = i - bigit_index1;
350 // Invariant: sum of both indices is again equal to i.
351 // Inner loop runs 0 times on last iteration, emptying accumulator.
352 while (bigit_index2 < used_digits_) {
353 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
354 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
355 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
356 bigit_index1--;
357 bigit_index2++;
358 }
359 // The overwritten bigits_[i] will never be read in further loop iterations,
360 // because bigit_index1 and bigit_index2 are always greater
361 // than i - used_digits_.
362 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
363 accumulator >>= kBigitSize;
364 }
365 // Since the result was guaranteed to lie inside the number the
366 // accumulator must be 0 now.
367 DCHECK_EQ(accumulator, 0);
368
369 // Don't forget to update the used_digits and the exponent.
370 used_digits_ = product_length;
371 exponent_ *= 2;
372 Clamp();
373}
374
375void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
376 DCHECK_NE(base, 0);
377 DCHECK_GE(power_exponent, 0);
378 if (power_exponent == 0) {
379 AssignUInt16(1);
380 return;
381 }
382 Zero();
383 int shifts = 0;
384 // We expect base to be in range 2-32, and most often to be 10.
385 // It does not make much sense to implement different algorithms for counting
386 // the bits.
387 while ((base & 1) == 0) {
388 base >>= 1;
389 shifts++;
390 }
391 int bit_size = 0;
392 int tmp_base = base;
393 while (tmp_base != 0) {
394 tmp_base >>= 1;
395 bit_size++;
396 }
397 int final_size = bit_size * power_exponent;
398 // 1 extra bigit for the shifting, and one for rounded final_size.
399 EnsureCapacity(final_size / kBigitSize + 2);
400
401 // Left to Right exponentiation.
402 int mask = 1;
403 while (power_exponent >= mask) mask <<= 1;
404
405 // The mask is now pointing to the bit above the most significant 1-bit of
406 // power_exponent.
407 // Get rid of first 1-bit;
408 mask >>= 2;
409 uint64_t this_value = base;
410
411 bool delayed_multipliciation = false;
412 const uint64_t max_32bits = 0xFFFFFFFF;
413 while (mask != 0 && this_value <= max_32bits) {
414 this_value = this_value * this_value;
415 // Verify that there is enough space in this_value to perform the
416 // multiplication. The first bit_size bits must be 0.
417 if ((power_exponent & mask) != 0) {
418 uint64_t base_bits_mask =
419 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
420 bool high_bits_zero = (this_value & base_bits_mask) == 0;
421 if (high_bits_zero) {
422 this_value *= base;
423 } else {
424 delayed_multipliciation = true;
425 }
426 }
427 mask >>= 1;
428 }
429 AssignUInt64(this_value);
430 if (delayed_multipliciation) {
432 }
433
434 // Now do the same thing as a bignum.
435 while (mask != 0) {
436 Square();
437 if ((power_exponent & mask) != 0) {
439 }
440 mask >>= 1;
441 }
442
443 // And finally add the saved shifts.
444 ShiftLeft(shifts * power_exponent);
445}
446
447// Precondition: this/other < 16bit.
448uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
449 DCHECK(IsClamped());
450 DCHECK(other.IsClamped());
451 DCHECK_GT(other.used_digits_, 0);
452
453 // Easy case: if we have less digits than the divisor than the result is 0.
454 // Note: this handles the case where this == 0, too.
455 if (BigitLength() < other.BigitLength()) {
456 return 0;
457 }
458
459 Align(other);
460
461 uint16_t result = 0;
462
463 // Start by removing multiples of 'other' until both numbers have the same
464 // number of digits.
465 while (BigitLength() > other.BigitLength()) {
466 // This naive approach is extremely inefficient if the this divided other
467 // might be big. This function is implemented for doubleToString where
468 // the result should be small (less than 10).
469 DCHECK(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
470 // Remove the multiples of the first digit.
471 // Example this = 23 and other equals 9. -> Remove 2 multiples.
474 }
475
476 DCHECK(BigitLength() == other.BigitLength());
477
478 // Both bignums are at the same length now.
479 // Since other has more than 0 digits we know that the access to
480 // bigits_[used_digits_ - 1] is safe.
481 Chunk this_bigit = bigits_[used_digits_ - 1];
482 Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
483
484 if (other.used_digits_ == 1) {
485 // Shortcut for easy (and common) case.
486 int quotient = this_bigit / other_bigit;
487 bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
488 result += quotient;
489 Clamp();
490 return result;
491 }
492
493 int division_estimate = this_bigit / (other_bigit + 1);
494 result += division_estimate;
495 SubtractTimes(other, division_estimate);
496
497 if (other_bigit * (division_estimate + 1) > this_bigit) {
498 // No need to even try to subtract. Even if other's remaining digits were 0
499 // another subtraction would be too much.
500 return result;
501 }
502
503 while (LessEqual(other, *this)) {
504 SubtractBignum(other);
505 result++;
506 }
507 return result;
508}
509
510template <typename S>
511static int SizeInHexChars(S number) {
512 DCHECK_GT(number, 0);
513 int result = 0;
514 while (number != 0) {
515 number >>= 4;
516 result++;
517 }
518 return result;
519}
520
521bool Bignum::ToHexString(char* buffer, int buffer_size) const {
522 DCHECK(IsClamped());
523 // Each bigit must be printable as separate hex-character.
524 DCHECK_EQ(kBigitSize % 4, 0);
525 const int kHexCharsPerBigit = kBigitSize / 4;
526
527 if (used_digits_ == 0) {
528 if (buffer_size < 2) return false;
529 buffer[0] = '0';
530 buffer[1] = '\0';
531 return true;
532 }
533 // We add 1 for the terminating '\0' character.
534 int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
536 if (needed_chars > buffer_size) return false;
537 int string_index = needed_chars - 1;
538 buffer[string_index--] = '\0';
539 for (int i = 0; i < exponent_; ++i) {
540 for (int j = 0; j < kHexCharsPerBigit; ++j) {
541 buffer[string_index--] = '0';
542 }
543 }
544 for (int i = 0; i < used_digits_ - 1; ++i) {
545 Chunk current_bigit = bigits_[i];
546 for (int j = 0; j < kHexCharsPerBigit; ++j) {
547 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
548 current_bigit >>= 4;
549 }
550 }
551 // And finally the last bigit.
552 Chunk most_significant_bigit = bigits_[used_digits_ - 1];
553 while (most_significant_bigit != 0) {
554 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
555 most_significant_bigit >>= 4;
556 }
557 return true;
558}
559
561 if (index >= BigitLength()) return 0;
562 if (index < exponent_) return 0;
563 return bigits_[index - exponent_];
564}
565
566int Bignum::Compare(const Bignum& a, const Bignum& b) {
567 DCHECK(a.IsClamped());
568 DCHECK(b.IsClamped());
569 int bigit_length_a = a.BigitLength();
570 int bigit_length_b = b.BigitLength();
571 if (bigit_length_a < bigit_length_b) return -1;
572 if (bigit_length_a > bigit_length_b) return +1;
573 for (int i = bigit_length_a - 1; i >= std::min(a.exponent_, b.exponent_);
574 --i) {
575 Chunk bigit_a = a.BigitAt(i);
576 Chunk bigit_b = b.BigitAt(i);
577 if (bigit_a < bigit_b) return -1;
578 if (bigit_a > bigit_b) return +1;
579 // Otherwise they are equal up to this digit. Try the next digit.
580 }
581 return 0;
582}
583
584int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
585 DCHECK(a.IsClamped());
586 DCHECK(b.IsClamped());
587 DCHECK(c.IsClamped());
588 if (a.BigitLength() < b.BigitLength()) {
589 return PlusCompare(b, a, c);
590 }
591 if (a.BigitLength() + 1 < c.BigitLength()) return -1;
592 if (a.BigitLength() > c.BigitLength()) return +1;
593 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
594 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
595 // of 'a'.
596 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
597 return -1;
598 }
599
600 Chunk borrow = 0;
601 // Starting at min_exponent all digits are == 0. So no need to compare them.
602 int min_exponent = std::min({a.exponent_, b.exponent_, c.exponent_});
603 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
604 Chunk chunk_a = a.BigitAt(i);
605 Chunk chunk_b = b.BigitAt(i);
606 Chunk chunk_c = c.BigitAt(i);
607 Chunk sum = chunk_a + chunk_b;
608 if (sum > chunk_c + borrow) {
609 return +1;
610 } else {
611 borrow = chunk_c + borrow - sum;
612 if (borrow > 1) return -1;
613 borrow <<= kBigitSize;
614 }
615 }
616 if (borrow == 0) return 0;
617 return -1;
618}
619
621 while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
622 used_digits_--;
623 }
624 if (used_digits_ == 0) {
625 // Zero.
626 exponent_ = 0;
627 }
628}
629
630bool Bignum::IsClamped() const {
631 return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
632}
633
635 for (int i = 0; i < used_digits_; ++i) {
636 bigits_[i] = 0;
637 }
638 used_digits_ = 0;
639 exponent_ = 0;
640}
641
642void Bignum::Align(const Bignum& other) {
643 if (exponent_ > other.exponent_) {
644 // If "X" represents a "hidden" digit (by the exponent) then we are in the
645 // following case (a == this, b == other):
646 // a: aaaaaaXXXX or a: aaaaaXXX
647 // b: bbbbbbX b: bbbbbbbbXX
648 // We replace some of the hidden digits (X) of a with 0 digits.
649 // a: aaaaaa000X or a: aaaaa0XX
650 int zero_digits = exponent_ - other.exponent_;
651 EnsureCapacity(used_digits_ + zero_digits);
652 for (int i = used_digits_ - 1; i >= 0; --i) {
653 bigits_[i + zero_digits] = bigits_[i];
654 }
655 for (int i = 0; i < zero_digits; ++i) {
656 bigits_[i] = 0;
657 }
658 used_digits_ += zero_digits;
659 exponent_ -= zero_digits;
662 }
663}
664
665void Bignum::BigitsShiftLeft(int shift_amount) {
666 DCHECK_LT(shift_amount, kBigitSize);
667 DCHECK_GE(shift_amount, 0);
668 Chunk carry = 0;
669 for (int i = 0; i < used_digits_; ++i) {
670 Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
671 bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
672 carry = new_carry;
673 }
674 if (carry != 0) {
675 bigits_[used_digits_] = carry;
676 used_digits_++;
677 }
678}
679
680void Bignum::SubtractTimes(const Bignum& other, int factor) {
681#ifdef DEBUG
682 Bignum a, b;
683 a.AssignBignum(*this);
684 b.AssignBignum(other);
685 b.MultiplyByUInt32(factor);
686 a.SubtractBignum(b);
687#endif
688 DCHECK(exponent_ <= other.exponent_);
689 if (factor < 3) {
690 for (int i = 0; i < factor; ++i) {
691 SubtractBignum(other);
692 }
693 return;
694 }
695 Chunk borrow = 0;
696 int exponent_diff = other.exponent_ - exponent_;
697 for (int i = 0; i < other.used_digits_; ++i) {
698 DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
699 DoubleChunk remove = borrow + product;
700 Chunk difference =
701 bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
702 bigits_[i + exponent_diff] = difference & kBigitMask;
703 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
704 (remove >> kBigitSize));
705 }
706 for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
707 if (borrow == 0) return;
708 Chunk difference = bigits_[i] - borrow;
709 bigits_[i] = difference & kBigitMask;
710 borrow = difference >> (kChunkSize - 1);
711 }
712 Clamp();
713 DCHECK(Bignum::Equal(a, *this));
714}
715
716} // namespace base
717} // namespace v8
SourcePosition pos
void AssignUInt16(uint16_t value)
Definition bignum.cc:25
static bool LessEqual(const Bignum &a, const Bignum &b)
Definition bignum.h:56
uint32_t Chunk
Definition bignum.h:78
void AssignHexString(Vector< const char > value)
Definition bignum.cc:103
uint16_t DivideModuloIntBignum(const Bignum &other)
Definition bignum.cc:448
void SubtractBignum(const Bignum &other)
Definition bignum.cc:180
void SubtractTimes(const Bignum &other, int factor)
Definition bignum.cc:680
void AddBignum(const Bignum &other)
Definition bignum.cc:139
static const int kDoubleChunkSize
Definition bignum.h:82
void Align(const Bignum &other)
Definition bignum.cc:642
uint64_t DoubleChunk
Definition bignum.h:79
void AddUInt64(uint64_t operand)
Definition bignum.cc:132
void MultiplyByUInt64(uint64_t factor)
Definition bignum.cc:239
void AssignDecimalString(Vector< const char > value)
Definition bignum.cc:76
static const int kBigitSize
Definition bignum.h:85
void BigitsShiftLeft(int shift_amount)
Definition bignum.cc:665
void AssignUInt64(uint64_t value)
Definition bignum.cc:35
Vector< Chunk > bigits_
Definition bignum.h:112
void MultiplyByPowerOfTen(int exponent)
Definition bignum.cc:265
static bool Equal(const Bignum &a, const Bignum &b)
Definition bignum.h:53
bool ToHexString(char *buffer, int buffer_size) const
Definition bignum.cc:521
static const Chunk kBigitMask
Definition bignum.h:86
void MultiplyByUInt32(uint32_t factor)
Definition bignum.cc:214
void AssignBignum(const Bignum &other)
Definition bignum.cc:51
void EnsureCapacity(int size)
Definition bignum.h:91
int BigitLength() const
Definition bignum.h:105
void ShiftLeft(int shift_amount)
Definition bignum.cc:206
Chunk BigitAt(int index) const
Definition bignum.cc:560
bool IsClamped() const
Definition bignum.cc:630
static const int kChunkSize
Definition bignum.h:81
void AssignPowerUInt16(uint16_t base, int exponent)
Definition bignum.cc:375
static const int kBigitCapacity
Definition bignum.h:89
static int Compare(const Bignum &a, const Bignum &b)
Definition bignum.cc:566
static int PlusCompare(const Bignum &a, const Bignum &b, const Bignum &c)
Definition bignum.cc:584
int32_t offset
std::optional< TNode< JSArray > > a
ZoneVector< RpoNumber > & result
Point to
uint32_t const mask
static uint64_t ReadUInt64(Vector< const char > buffer, int from, int digits_to_read)
Definition bignum.cc:63
char HexCharOfValue(int value)
Definition strings.h:42
static int HexCharValue(char c)
Definition bignum.cc:96
static const int kMaxUint64DecimalDigits
Definition strtod.cc:24
static int SizeInHexChars(S number)
Definition bignum.cc:511
static int BitSize(S value)
Definition bignum.cc:20
#define UNREACHABLE()
Definition logging.h:67
#define DCHECK_NE(v1, v2)
Definition logging.h:486
#define DCHECK_GE(v1, v2)
Definition logging.h:488
#define UNIMPLEMENTED()
Definition logging.h:66
#define DCHECK(condition)
Definition logging.h:482
#define DCHECK_LT(v1, v2)
Definition logging.h:489
#define DCHECK_EQ(v1, v2)
Definition logging.h:485
#define DCHECK_GT(v1, v2)
Definition logging.h:487
std::unique_ptr< ValueMirror > value