v8
V8 is Google’s open source high-performance JavaScript and WebAssembly engine, written in C++.
Loading...
Searching...
No Matches
control-equivalence.h
Go to the documentation of this file.
1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_
6#define V8_COMPILER_CONTROL_EQUIVALENCE_H_
7
10#include "src/compiler/node.h"
13
14namespace v8 {
15namespace internal {
16namespace compiler {
17
18// Determines control dependence equivalence classes for control nodes. Any two
19// nodes having the same set of control dependences land in one class. These
20// classes can in turn be used to:
21// - Build a program structure tree (PST) for controls in the graph.
22// - Determine single-entry single-exit (SESE) regions within the graph.
23//
24// Note that this implementation actually uses cycle equivalence to establish
25// class numbers. Any two nodes are cycle equivalent if they occur in the same
26// set of cycles. It can be shown that control dependence equivalence reduces
27// to undirected cycle equivalence for strongly connected control flow graphs.
28//
29// The algorithm is based on the paper, "The program structure tree: computing
30// control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which
31// also contains proofs for the aforementioned equivalence. References to line
32// numbers in the algorithm from figure 4 have been added [line:x].
34 : public NON_EXPORTED_BASE(ZoneObject) {
35 public:
37 : zone_(zone),
38 graph_(graph),
39 dfs_number_(0),
40 class_number_(1),
41 node_data_(graph->NodeCount(), zone) {}
42
43 // Run the main algorithm starting from the {exit} control node. This causes
44 // the following iterations over control edges of the graph:
45 // 1) A breadth-first backwards traversal to determine the set of nodes that
46 // participate in the next step. Takes O(E) time and O(N) space.
47 // 2) An undirected depth-first backwards traversal that determines class
48 // numbers for all participating nodes. Takes O(E) time and O(N) space.
49 void Run(Node* exit);
50
51 // Retrieves a previously computed class number.
52 size_t ClassOf(Node* node) {
53 DCHECK_NE(kInvalidClass, GetClass(node));
54 return GetClass(node);
55 }
56
57 private:
58 static const size_t kInvalidClass = static_cast<size_t>(-1);
59 enum DFSDirection { kInputDirection, kUseDirection };
60
61 struct Bracket {
62 DFSDirection direction; // Direction in which this bracket was added.
63 size_t recent_class; // Cached class when bracket was topmost.
64 size_t recent_size; // Cached set-size when bracket was topmost.
65 Node* from; // Node that this bracket originates from.
66 Node* to; // Node that this bracket points to.
67 };
68
69 // The set of brackets for each node during the DFS walk.
71
73 DFSDirection direction; // Direction currently used in DFS walk.
74 Node::InputEdges::iterator input; // Iterator used for "input" direction.
75 Node::UseEdges::iterator use; // Iterator used for "use" direction.
76 Node* parent_node; // Parent node of entry during DFS walk.
77 Node* node; // Node that this stack entry belongs to.
78 };
79
80 // The stack is used during the undirected DFS walk.
82
84 explicit NodeData(Zone* zone)
85 : class_number(kInvalidClass),
86 blist(BracketList(zone)),
87 visited(false),
88 on_stack(false) {}
89
90 size_t class_number; // Equivalence class number assigned to node.
91 BracketList blist; // List of brackets per node.
92 bool visited : 1; // Indicates node has already been visited.
93 bool on_stack : 1; // Indicates node is on DFS stack during walk.
94 };
95
96 // The per-node data computed during the DFS walk.
98
99 // Called at pre-visit during DFS walk.
100 void VisitPre(Node* node);
101
102 // Called at mid-visit during DFS walk.
103 void VisitMid(Node* node, DFSDirection direction);
104
105 // Called at post-visit during DFS walk.
106 void VisitPost(Node* node, Node* parent_node, DFSDirection direction);
107
108 // Called when hitting a back edge in the DFS walk.
109 void VisitBackedge(Node* from, Node* to, DFSDirection direction);
110
111 // Performs and undirected DFS walk of the graph. Conceptually all nodes are
112 // expanded, splitting "input" and "use" out into separate nodes. During the
113 // traversal, edges towards the representative nodes are preferred.
114 //
115 // \ / - Pre-visit: When N1 is visited in direction D the preferred
116 // x N1 edge towards N is taken next, calling VisitPre(N).
117 // | - Mid-visit: After all edges out of N2 in direction D have
118 // | N been visited, we switch the direction and start considering
119 // | edges out of N1 now, and we call VisitMid(N).
120 // x N2 - Post-visit: After all edges out of N1 in direction opposite
121 // / \ to D have been visited, we pop N and call VisitPost(N).
122 //
123 // This will yield a true spanning tree (without cross or forward edges) and
124 // also discover proper back edges in both directions.
125 void RunUndirectedDFS(Node* exit);
126
127 void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node);
128 void DetermineParticipation(Node* exit);
129
130 private:
132 size_t const index = node->id();
133 if (index >= node_data_.size()) node_data_.resize(index + 1);
134 return node_data_[index];
135 }
136 void AllocateData(Node* node) {
137 size_t const index = node->id();
138 if (index >= node_data_.size()) node_data_.resize(index + 1);
139 node_data_[index] = zone_->New<NodeData>(zone_);
140 }
141
142 int NewClassNumber() { return class_number_++; }
143 int NewDFSNumber() { return dfs_number_++; }
144
145 bool Participates(Node* node) { return GetData(node) != nullptr; }
146
147 // Accessors for the equivalence class stored within the per-node data.
148 size_t GetClass(Node* node) { return GetData(node)->class_number; }
149 void SetClass(Node* node, size_t number) {
150 DCHECK(Participates(node));
151 GetData(node)->class_number = number;
152 }
153
154 // Accessors for the bracket list stored within the per-node data.
156 DCHECK(Participates(node));
157 return GetData(node)->blist;
158 }
159 void SetBracketList(Node* node, BracketList& list) {
160 DCHECK(Participates(node));
161 GetData(node)->blist = list;
162 }
163
164 // Mutates the DFS stack by pushing an entry.
165 void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir);
166
167 // Mutates the DFS stack by popping an entry.
168 void DFSPop(DFSStack& stack, Node* node);
169
170 void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction);
171 void BracketListTRACE(BracketList& blist);
172
173 Zone* const zone_;
175 int dfs_number_; // Generates new DFS pre-order numbers on demand.
176 int class_number_; // Generates new equivalence class numbers on demand.
177 Data node_data_; // Per-node data stored as a side-table.
178};
179
180} // namespace compiler
181} // namespace internal
182} // namespace v8
183
184#endif // V8_COMPILER_CONTROL_EQUIVALENCE_H_
void SetBracketList(Node *node, BracketList &list)
Zone * zone_
OptionalOpIndex index
ArrayReduceDirection direction
#define NON_EXPORTED_BASE(code)
#define DCHECK_NE(v1, v2)
Definition logging.h:486
#define DCHECK(condition)
Definition logging.h:482
#define V8_EXPORT_PRIVATE
Definition macros.h:460
TFGraph * graph_