29  DCHECK(integer_part >= min);
 
   30  DCHECK(integer_part <= max);
 
   42void ProcessorImpl::InvertBasecase(RWDigits Z, Digits 
V, RWDigits scratch) {
 
   45  DCHECK(scratch.len() >= 2 * 
V.len());
 
   47  RWDigits 
X(scratch, 0, 2 * n);
 
   50  for (; 
i < 
n; 
i++) 
X[
i] = 0;
 
   53  RWDigits R(
nullptr, 0);  
 
   70void ProcessorImpl::InvertNewton(RWDigits Z, Digits 
V, RWDigits scratch) {
 
   71  const int vn = 
V.len();
 
   74  const int kSOffset = 0;
 
   75  const int kWOffset = 0;  
 
   83  DCHECK(
V.len() > kBasecasePrecision);
 
   90  int target_fraction_bits[8 * 
sizeof(vn)];  
 
   94    target_fraction_bits[iteration] = k;
 
  103  Digits top_part_of_v(
V, vn - initial_digits, initial_digits);
 
  104  InvertBasecase(Z, top_part_of_v, scratch);
 
  105  Z[initial_digits] = Z[initial_digits] + 1;  
 
  107  Z.set_len(initial_digits + 1);
 
  111    DcheckIntegerPartRange(Z, 1, 2);
 
  114    RWDigits 
S(scratch, kSOffset, 2 * Z.len());
 
  118    DcheckIntegerPartRange(S, 1, 4);
 
  122    int t_len = std::min(
V.len(), fraction_digits);
 
  123    Digits 
T(
V, 
V.len() - t_len, t_len);
 
  128    RWDigits 
U(scratch, kUOffset, 
S.len() + T.len());
 
  129    DCHECK(
U.len() > fraction_digits);
 
  132    U = 
U + (
U.len() - (1 + fraction_digits));
 
  133    DcheckIntegerPartRange(U, 0, 3);
 
  138    RWDigits 
W(scratch, kWOffset, 
U.len());
 
  139    int padding_digits = 
U.len() - Z.len();
 
  140    for (
int i = 0; 
i < padding_digits; 
i++) W[
i] = 0;
 
  142    DcheckIntegerPartRange(W, 2, 4);
 
  155      DcheckIntegerPartRange(Z, 1, 2);
 
  162      Digits W_part(W, 
W.len() - vn - 1, vn);
 
  163      Digits U_part(U, 
U.len() - vn - 1, vn);
 
  165      digit_t integer_part = 
W.msd() - 
U.msd() - borrow;
 
  166      DCHECK(integer_part == 1 || integer_part == 2);
 
  167      if (integer_part == 2) {
 
  171        for (
int i = 0; 
i < Z.len(); 
i++) Z[
i] = ~
digit_t{0};
 
  176    k = target_fraction_bits[iteration];
 
  187void ProcessorImpl::Invert(RWDigits Z, Digits 
V, RWDigits scratch) {
 
  195    return InvertNewton(Z, 
V, scratch);
 
  203    InvertBasecase(Z, 
V, scratch);
 
  215void ProcessorImpl::DivideBarrett(RWDigits Q, RWDigits R, Digits A, Digits B,
 
  216                                  Digits 
I, RWDigits scratch) {
 
  217  DCHECK(Q.len() > 
A.len() - 
B.len());
 
  226  int orig_q_len = Q.len();
 
  229  Digits A1 = 
A + 
B.len();
 
  235  RWDigits 
K(scratch, 0, 2 * 
I.len());
 
  238  Q.set_len(
I.len() + 1);
 
  239  Add(Q, 
K + 
I.len(), A1);
 
  243  RWDigits 
P(scratch, 0, 
A.len() + 1);
 
  248  for (
int i = 
B.len(); 
i < R.len(); 
i++) R[
i] = 0;
 
  261    } 
while (r_high != 0);
 
  274  int final_q_len = Q.len();
 
  275  Q.set_len(orig_q_len);
 
  276  for (
int i = final_q_len; 
i < orig_q_len; 
i++) Q[
i] = 0;
 
  280void ProcessorImpl::DivideBarrett(RWDigits Q, RWDigits R, Digits A, Digits B) {
 
  281  DCHECK(Q.len() > 
A.len() - 
B.len());
 
  287  ShiftedDigits b_normalized(B);
 
  288  ShiftedDigits a_normalized(A, b_normalized.shift());
 
  298  int barrett_dividend_length = 
A.len() <= 2 * 
B.len() ? 
A.len() : 2 * 
B.len();
 
  299  int i_len = barrett_dividend_length - 
B.len();
 
  300  ScratchDigits 
I(i_len + 1);  
 
  304  ScratchDigits scratch(scratch_len);
 
  305  Invert(
I, Digits(B, 
B.len() - i_len, i_len), scratch);
 
  309  if (
A.len() > 2 * 
B.len()) {
 
  319    ScratchDigits Z(z_len);
 
  320    PutAt(Z, A + n * (t - 2), z_len);
 
  323    ScratchDigits Qi(qi_len);
 
  328      DivideBarrett(Qi, Ri, Z, B, 
I, scratch);
 
  330      RWDigits target = Q + n * 
i;
 
  332      int to_copy = std::min(qi_len, target.len());
 
  333      for (
int j = 0; j < to_copy; j++) target[j] = Qi[j];
 
  334      for (
int j = to_copy; j < target.len(); j++) target[j] = 0;
 
  336      for (
int j = to_copy; j < Qi.len(); j++) {
 
  342    for (
int i = t - 3; 
i >= 0; 
i--) {
 
  348      DivideBarrett(Qi, Ri, Z, B, 
I, scratch);
 
  349      DCHECK(Qi[qi_len - 1] == 0);
 
  355    DCHECK(Ri.len() <= R.len());
 
  359    DivideBarrett(Q, R, A, B, 
I, scratch);
 
void DivideBurnikelZiegler(RWDigits Q, RWDigits R, Digits A, Digits B)
 
void Multiply(RWDigits Z, Digits X, Digits Y)
 
void DivideSchoolbook(RWDigits Q, RWDigits R, Digits A, Digits B)
 
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and X(inclusive) percent " "of the regular marking start limit") DEFINE_INT(stress_scavenge
 
static digit_t digit_div(digit_t high, digit_t low, digit_t divisor, digit_t *remainder)
 
void PutAt(RWDigits Z, Digits A, int count)
 
bool IsBitNormalized(Digits X)
 
void LeftShift(RWDigits Z, Digits X, digit_t shift)
 
static constexpr int kDigitBits
 
constexpr int InvertNewtonScratchSpace(int n)
 
void Add(RWDigits Z, Digits X, Digits Y)
 
bool GreaterThanOrEqual(Digits A, Digits B)
 
constexpr int kInvertNewtonExtraSpace
 
void Subtract(RWDigits Z, Digits X, Digits Y)
 
digit_t digit_sub2(digit_t a, digit_t b, digit_t borrow_in, digit_t *borrow_out)
 
digit_t SubtractAndReturnBorrow(RWDigits Z, Digits X, Digits Y)
 
void RightShift(RWDigits Z, Digits X, digit_t shift, const RightShiftState &state)
 
digit_t AddAndReturnCarry(RWDigits Z, Digits X, Digits Y)
 
constexpr int kNewtonInversionThreshold
 
constexpr int kBurnikelThreshold
 
constexpr int InvertScratchSpace(int n)
 
constexpr int DivideBarrettScratchSpace(int n)
 
#define P(name, number_of_args, result_size)
 
#define I(name, number_of_args, result_size)
 
#define DCHECK(condition)