![]() |
v8
V8 is Google’s open source high-performance JavaScript and WebAssembly engine, written in C++.
|
Go to the source code of this file.
Functions | |
DEFINE_BOOL (experimental, false, "Indicates that V8 is running with experimental features enabled. " "This flag is typically not set explicitly but instead enabled as " "an implication of other flags which enable experimental features.") DEFINE_BOOL(abort_on_contradictory_flags | |
Disallow flags or implications overriding each other | DEFINE_BOOL (exit_on_contradictory_flags, false, "Exit with return code 0 on contradictory flags.") DEFINE_WEAK_IMPLICATION(exit_on_contradictory_flags |
Disallow flags or implications overriding each other abort_on_contradictory_flags | DEFINE_BOOL (allow_overwriting_for_next_flag, false, "temporary disable flag contradiction to allow overwriting just " "the next flag") DEFINE_BOOL(builtin_subclassing |
Disallow flags or implications overriding each other abort_on_contradictory_flags subclassing support in built in methods | DEFINE_BOOL (enable_sharedarraybuffer_per_context, false, "enable the SharedArrayBuffer constructor per context") DEFINE_BOOL(stress_snapshot |
DEFINE_BOOL (lite_mode, V8_LITE_MODE_BOOL, "enables trade-off of performance for memory savings") DEFINE_BOOL_READONLY(enable_allocation_folding | |
DEFINE_BOOL_READONLY (disable_write_barriers, V8_DISABLE_WRITE_BARRIERS_BOOL, "disable write barriers when GC is non-incremental " "and heap contains single generation.") DEFINE_BOOL_READONLY(enable_unconditional_write_barriers | |
DEFINE_BOOL_READONLY (single_generation, V8_SINGLE_GENERATION_BOOL, "allocate all objects from young generation to old generation") DEFINE_BOOL_READONLY(conservative_stack_scanning | |
use conservative stack scanning | DEFINE_IMPLICATION (conservative_stack_scanning, scavenger_conservative_object_pinning) DEFINE_BOOL_READONLY(direct_handle |
use conservative stack scanning use direct handles with conservative stack scanning | DEFINE_EXPERIMENTAL_FEATURE (scavenger_conservative_object_pinning, "Objects reachable from the native stack during " "scavenge will be pinned and " "won't move.") DEFINE_BOOL(stress_scavenger_conservative_object_pinning |
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger | DEFINE_IMPLICATION (stress_scavenger_conservative_object_pinning, scavenger_conservative_object_pinning) DEFINE_NEG_IMPLICATION(stress_scavenger_conservative_object_pinning |
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger minor_gc_task | DEFINE_VALUE_IMPLICATION (stress_scavenger_conservative_object_pinning, scavenger_max_new_space_capacity_mb, 1u) DEFINE_BOOL(stress_scavenger_conservative_object_pinning_random |
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger minor_gc_task Enables random stressing of object pinning in such that each GC would randomly pick a subset of the precise references to treat conservatively | DEFINE_IMPLICATION (stress_scavenger_conservative_object_pinning_random, stress_scavenger_conservative_object_pinning) DEFINE_BOOL(scavenger_precise_object_pinning |
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger minor_gc_task Enables random stressing of object pinning in such that each GC would randomly pick a subset of the precise references to treat conservatively Objects reachable from handles during scavenge will be pinned and won t move | DEFINE_BOOL (precise_object_pinning, false, "Objects reachable from handles during GC will be pinned and won't move.") DEFINE_BOOL(scavenger_promote_quarantined_pages |
DEFINE_BOOL_READONLY (local_off_stack_check, V8_ENABLE_LOCAL_OFF_STACK_CHECK_BOOL, "check for off-stack allocation of v8::Local") DEFINE_BOOL(future | |
Implies all staged features that we want to ship in the not too far future | DEFINE_BOOL (force_emit_interrupt_budget_checks, false, "force emit tier-up logic from all non-turbofan code, even if it " "is the top enabled tier") DEFINE_BOOL_READONLY(maglev_future |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future | DEFINE_BOOL_READONLY (optimize_on_next_call_optimizes_to_maglev, false, "make OptimizeFunctionOnNextCall optimize to maglev instead of turbofan") DEFINE_BOOL(maglev_inlining |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler | DEFINE_BOOL (maglev_loop_peeling, true, "enable loop peeling in the maglev optimizing compiler") DEFINE_BOOL(maglev_optimistic_peeled_loops |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for | loops (loop SPeeling) in the " "maglev optimizing compiler") DEFINE_INT(maglev_loop_peeling_max_size |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler | DEFINE_INT (maglev_loop_peeling_max_size_cumulative, 900, "max cumulative size for loop peeling in the maglev optimizing compiler") DEFINE_BOOL(maglev_deopt_data_on_background |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread | DEFINE_BOOL (maglev_build_code_on_background, true, "Generate code on background thread") DEFINE_WEAK_IMPLICATION(maglev_build_code_on_background |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background | DEFINE_BOOL (maglev_destroy_on_background, true, "Destroy compilation jobs on background thread") DEFINE_BOOL(maglev_inline_api_calls |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code | DEFINE_BOOL (maglev_cons_string_elision, false, "Native support for cons strings and their elision in maglev.") DEFINE_BOOL(maglev_pretenure_store_values |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites | DEFINE_UINT (concurrent_maglev_max_threads, 2, "max number of threads that concurrent Maglev can use (0 for unbounded)") DEFINE_BOOL(concurrent_maglev_high_priority_threads |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev | DEFINE_INT (max_maglev_inline_depth, 1, "max depth of functions that Maglev will inline excl. small functions") DEFINE_INT(max_maglev_hard_inline_depth |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions | DEFINE_INT (max_maglev_inlined_bytecode_size, 460, "maximum size of bytecode for a single inlining") DEFINE_INT(max_maglev_inlined_bytecode_size_cumulative |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions | DEFINE_INT (max_maglev_inlined_bytecode_size_small, 27, "maximum size of bytecode considered for small function inlining") DEFINE_FLOAT(min_maglev_inlining_frequency |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions minimum frequency for inlining | DEFINE_WEAK_VALUE_IMPLICATION (turbofan, max_maglev_inlined_bytecode_size_cumulative, 920) DEFINE_BOOL(maglev_reuse_stack_slots |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions minimum frequency for inlining reuse stack slots in the maglev optimizing compiler | DEFINE_BOOL (maglev_untagged_phis, true, "enable phi untagging in the maglev optimizing compiler") DEFINE_BOOL(maglev_hoist_osr_value_phi_untagging |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions minimum frequency for inlining reuse stack slots in the maglev optimizing compiler enable phi untagging to hoist untagging of osr values | DEFINE_EXPERIMENTAL_FEATURE (maglev_speculative_hoist_phi_untagging, "enable phi untagging to hoist untagging of loop phi inputs (could " "still cause deopt loops)") DEFINE_EXPERIMENTAL_FEATURE(maglev_non_eager_inlining |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions minimum frequency for inlining reuse stack slots in the maglev optimizing compiler enable phi untagging to hoist untagging of osr values enable Maglev non eager inlining | DEFINE_EXPERIMENTAL_FEATURE (turbolev_non_eager_inlining, "enable Turbolev non-eager inlining") DEFINE_BOOL(maglev_inlining_following_eager_order |
other heap size | flags (e.g. initial_heap_size) take precedence") DEFINE_SIZE_T( max_shared_heap_size |
other heap size max size of the shared | heap (in Mbytes) |
other heap size generate builtins concurrently on separate threads in mksnapshot | DEFINE_BOOL (concurrent_recompilation, true, "optimizing hot functions asynchronously on a separate thread") DEFINE_BOOL(trace_concurrent_recompilation |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation | DEFINE_INT (concurrent_recompilation_queue_length, 8, "the length of the concurrent compilation queue") DEFINE_INT(concurrent_recompilation_delay |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms | DEFINE_BOOL (concurrent_recompilation_front_running, true, "move compile jobs to the front if recompilation is requested " "multiple times") DEFINE_UINT(concurrent_turbofan_max_threads |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can | use (0 for unbounded)") DEFINE_BOOL( stress_concurrent_inlining |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result | DEFINE_WEAK_VALUE_IMPLICATION (stress_concurrent_inlining, invocation_count_for_turbofan, 150) DEFINE_BOOL(maglev_overwrite_budget |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget | DEFINE_WEAK_VALUE_IMPLICATION (maglev_overwrite_budget, invocation_count_for_turbofan, 10000) DEFINE_BOOL(maglev_overwrite_osr_budget |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget whether maglev resets the OSR interrupt budget | DEFINE_WEAK_VALUE_IMPLICATION (maglev_overwrite_osr_budget, invocation_count_for_osr, 800) DEFINE_BOOL(stress_concurrent_inlining_attach_code |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget whether maglev resets the OSR interrupt budget create additional concurrent optimization jobs | DEFINE_IMPLICATION (stress_concurrent_inlining_attach_code, stress_concurrent_inlining) DEFINE_INT(max_serializer_nesting |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget whether maglev resets the OSR interrupt budget create additional concurrent optimization jobs maximum levels for nesting child serializers | DEFINE_BOOL (trace_heap_broker_verbose, false, "trace the heap broker verbosely (all reports)") DEFINE_BOOL(trace_heap_broker |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget whether maglev resets the OSR interrupt budget create additional concurrent optimization jobs maximum levels for nesting child serializers trace the heap | broker (reports on missing data only)") DEFINE_INT(deopt_every_n_times |
DEFINE_BOOL (stress_turbo_late_spilling, false, "optimize placement of all spill instructions, not just loop-top phis") DEFINE_BOOL(turbo_wasm_address_reassociation | |
refactor address components for immediate indexing | DEFINE_BOOL (concurrent_turbo_tracing, false, "allow concurrent compilation to happen in combination with " "trace-turbo* flags") DEFINE_BOOL(optimize_maglev_optimizes_to_turbofan |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev | DEFINE_STRING (trace_turbo_path, nullptr, "directory to dump generated TurboFan IR to") DEFINE_STRING(trace_turbo_filter |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation | DEFINE_STRING (trace_turbo_file_prefix, "turbo", "trace turbo graph to a file with given prefix") DEFINE_STRING(trace_turbo_cfg_file |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg | graph (for C1 visualizer) to a given file name") DEFINE_SLOW_TRACING_BOOL(trace_turbo_trimming |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer | DEFINE_SLOW_TRACING_BOOL (trace_turbo_jt, false, "trace TurboFan's jump threading") DEFINE_SLOW_TRACING_BOOL(trace_turbo_ceq |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence | DEFINE_SLOW_TRACING_BOOL (trace_turbo_loop, false, "trace TurboFan's loop optimizations") DEFINE_SLOW_TRACING_BOOL(trace_turbo_alloc |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator | DEFINE_SLOW_TRACING_BOOL (trace_representation, false, "trace representation types") DEFINE_BOOL(trace_turbo_stack_accesses |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run | time (x64 only)") DEFINE_BOOL(fuzzing_and_concurrent_recompilation |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation | DEFINE_NEG_NEG_IMPLICATION (concurrent_recompilation, fuzzing_and_concurrent_recompilation) DEFINE_DISABLE_FLAG_IMPLICATION(fuzzing_and_concurrent_recompilation |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo | DEFINE_DISABLE_FLAG_IMPLICATION (fuzzing_and_concurrent_recompilation, trace_turbo_graph) DEFINE_DISABLE_FLAG_IMPLICATION(fuzzing_and_concurrent_recompilation |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled | DEFINE_DISABLE_FLAG_IMPLICATION (fuzzing_and_concurrent_recompilation, trace_turbo_reduction) DEFINE_DISABLE_FLAG_IMPLICATION(fuzzing_and_concurrent_recompilation |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses | DEFINE_STRING (turbo_verify_machine_graph, nullptr, "verify TurboFan machine graph before instruction selection") DEFINE_BOOL_READONLY(verify_csa |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs | DEFINE_STRING (csa_trap_on_node, nullptr, "trigger break point when a node with given id is created in " "given stub. The format is: StubName,NodeId") DEFINE_BOOL_READONLY(fixed_array_bounds_checks |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks | DEFINE_BOOL (turbo_stats_nvp, false, "print TurboFan statistics in machine-readable format") DEFINE_BOOL(turbo_stats_wasm |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations | DEFINE_INT (max_inlined_bytecode_size, 460, "maximum size of bytecode for a single inlining") DEFINE_INT(max_inlined_bytecode_size_cumulative |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations maximum cumulative size of bytecode considered for inlining | DEFINE_INT (max_inlined_bytecode_size_absolute, 4600, "maximum absolute size of bytecode considered for inlining") DEFINE_FLOAT(reserve_inline_budget_scale_factor |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations maximum cumulative size of bytecode considered for inlining scale factor of bytecode size used to calculate the inlining budget | DEFINE_INT (max_inlined_bytecode_size_small, 27, "maximum size of bytecode considered for small function inlining") DEFINE_INT(max_optimized_bytecode_size |
too high values may cause the compiler to | hit (release) assertions") DEFINE_BOOL(stress_inline |
too high values may cause the compiler to set high thresholds for inlining to as much as possible | DEFINE_VALUE_IMPLICATION (stress_inline, max_inlined_bytecode_size_cumulative, 999999) DEFINE_VALUE_IMPLICATION(stress_inline |
too high values may cause the compiler to set high thresholds for inlining to as much as possible | DEFINE_BOOL (turbo_inline_array_builtins, true, "inline array builtins in TurboFan code") DEFINE_BOOL(maglev_escape_analysis |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape | DEFINE_EXPERIMENTAL_FEATURE (maglev_object_tracking, "track object changes to avoid escaping them") DEFINE_BOOL(trace_maglev_object_tracking |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects | DEFINE_WEAK_IMPLICATION (trace_maglev_graph_building, trace_maglev_object_tracking) DEFINE_BOOL_READONLY(turbo_string_builder |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder | DEFINE_BOOL (log_or_trace_osr, false, "internal helper flag, please use --trace-osr instead.") DEFINE_BOOL(analyze_environment_liveness |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values | DEFINE_BOOL (trace_environment_liveness, false, "trace liveness of local variable slots") DEFINE_BOOL(trace_turbo_load_elimination |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination | DEFINE_BOOL (turbo_profiling_verbose, false, "enable basic block profiling in TurboFan, and include each " "function's schedule and disassembly in the output") DEFINE_STRING(turbo_profiling_output |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this | file (requires that V8 was built with v8_enable_builtins_profiling=true)") DEFINE_BOOL(reorder_builtins |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot | DEFINE_BOOL (abort_on_bad_builtin_profile_data, false, "flag for mksnapshot, abort if builtins profile can't be applied") DEFINE_BOOL(warn_about_builtin_profile_data |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data | DEFINE_STRING (dump_builtins_hashes_to_file, nullptr, "flag for mksnapshot, dump CSA builtins graph hashes to this file") DEFINE_BOOL(turbo_verify_allocation |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan | DEFINE_BOOL (turbo_instruction_scheduling, false, "enable instruction scheduling in TurboFan") DEFINE_BOOL(turbo_stress_instruction_scheduling |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking | DEFINE_IMPLICATION (turbo_stress_instruction_scheduling, turbo_instruction_scheduling) DEFINE_BOOL(turbo_store_elimination |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan | DEFINE_BOOL_READONLY (turbo_typer_hardening, true, "extra bounds checks to protect against some known typer " "mismatch exploit techniques (best effort)") DEFINE_BOOL_READONLY(turbo_rewrite_far_jumps |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near | jumps (ia32, x64)") DEFINE_BOOL( stress_gc_during_compilation |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode | DEFINE_BOOL_READONLY (turbo_compress_frame_translations, false, "compress deoptimization frame translations (experimental)") DEFINE_BOOL(turbo_inline_js_wasm_calls |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm | calls (specifically:inline JS-to-Wasm wrappers and then " "the body of the Wasm function, if applicable)") DEFINE_BOOL(turbo_optimize_inlined_js_wasm_wrappers |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional | optimizations (especially load-elimination) on " "inlined JS-to-Wasm wrappers") DEFINE_NEG_NEG_IMPLICATION(turbo_inline_js_wasm_calls |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers | DEFINE_BOOL (turbo_optimize_math_minmax, true, "optimize call math.min/max with double array") DEFINE_BOOL(turbo_collect_feedback_in_generic_lowering |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering | DEFINE_BOOL (turboshaft_enable_debug_features, false, "enables Turboshaft's DebugPrint, StaticAssert and " "CheckTurboshaftTypeOf operations") DEFINE_BOOL(turboshaft_wasm_load_elimination |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination | DEFINE_EXPERIMENTAL_FEATURE (turboshaft_wasm_in_js_inlining, "inline Wasm code into JS functions via Turboshaft (instead of via " "TurboFan). Only the Wasm code is inlined in Turboshaft, the JS-to-Wasm " "wrappers are still inlined in TurboFan. For controlling whether to inline " "at all, see --turbo-inline-js-wasm-calls.") DEFINE_BOOL(turboshaft_load_elimination |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS | DEFINE_BOOL (turboshaft_loop_unrolling, true, "enable Turboshaft's loop unrolling") DEFINE_BOOL(turboshaft_string_concat_escape_analysis |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation | DEFINE_EXPERIMENTAL_FEATURE (turboshaft_typed_optimizations, "enable an additional Turboshaft phase that " "performs optimizations based on type information") DEFINE_BOOL(turbolev |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use | Turbolev (≈ Maglev+Turboshaft combined) as the 4th tier " "compiler instead of Turbofan") DEFINE_EXPERIMENTAL_FEATURE( turbolev_future |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future | DEFINE_BOOL (typed_array_length_loading, true, "Enable specializing loading the TypedArray length in Maglev / Turbofan") DEFINE_BOOL_READONLY(turboshaft_trace_reduction |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps | DEFINE_BOOL_READONLY (turboshaft_trace_emitted, false, "trace emitted Turboshaft instructions") DEFINE_BOOL_READONLY(turboshaft_trace_intermediate_reductions |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps | DEFINE_BOOL (profile_guided_optimization_for_empty_feedback_vector, true, "profile guided optimization for empty feedback vector") DEFINE_INT(invocation_count_for_early_optimization |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization | DEFINE_INT (invocation_count_for_maglev_with_delay, 600, "invocation count for maglev for functions which according to " "profile_guided_optimization are likely to deoptimize before " "reaching this invocation count") DEFINE_BOOL(optimize_for_size |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed | DEFINE_BOOL (reopt_after_lazy_deopts, true, "Immediately re-optimize code after some lazy deopts") DEFINE_INT(stress_sampling_allocation_profiler |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval | DEFINE_BOOL (lazy_new_space_shrinking, false, "Enables the lazy new space shrinking strategy") DEFINE_SIZE_T(min_semi_space_size |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi | space (in MBytes) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces | DEFINE_SIZE_T (max_semi_space_size, 0, "max size of a semi-space (in MBytes), the new space consists of " "two semi-spaces") DEFINE_SIZE_T(max_heap_size |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after | random (0, X) V8 allocations. It override s " "gc_interval.") DEFINE_INT(cppgc_random_gc_interval |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections | DEFINE_BOOL (trace_gc, false, "print one trace line following each garbage collection") DEFINE_BOOL(trace_gc_nvp |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed | DEFINE_BOOL (incremental_marking_start_user_visible, true, "Starts incremental marking with kUserVisible priority.") DEFINE_INT(incremental_marking_soft_trigger |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects | DEFINE_UINT (minor_gc_task_trigger, 80, "minor GC task trigger in percent of the current heap limit") DEFINE_BOOL(minor_gc_task_with_lower_priority |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority | DEFINE_EXPERIMENTAL_FEATURE (cppgc_young_generation, "run young generation garbage collections in Oilpan") DEFINE_INT(concurrent_marking_max_worker_num |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads | DEFINE_BOOL (concurrent_array_buffer_sweeping, true, "concurrently sweep array buffers") DEFINE_BOOL(stress_concurrent_allocation |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory | DEFINE_INT (ephemeron_fixpoint_iterations, 10, "number of fixpoint iterations it takes to switch to linear " "ephemeron algorithm") DEFINE_NEG_NEG_IMPLICATION(concurrent_sweeping |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping | DEFINE_BOOL (parallel_pointer_update, true, "use parallel pointer update during compaction") DEFINE_BOOL(parallel_weak_ref_clearing |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause | DEFINE_BOOL (detect_ineffective_gcs_near_heap_limit, true, "trigger out-of-memory failure to avoid GC storm near heap limit") DEFINE_BOOL(trace_incremental_marking |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking | DEFINE_BOOL (track_gc_object_stats, false, "track object counts and memory usage") DEFINE_BOOL(trace_gc_object_stats |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage | DEFINE_GENERIC_IMPLICATION (trace_zone_stats, TracingFlags::zone_stats.store(v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE)) DEFINE_SIZE_T(zone_stats_tolerance |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount | DEFINE_GENERIC_IMPLICATION (trace_zone_type_stats, TracingFlags::zone_stats.store(v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE)) DEFINE_GENERIC_IMPLICATION(track_gc_object_stats |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats | store (v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE)) DEFINE_GENERIC_IMPLICATION(trace_gc_object_stats |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected | DEFINE_BOOL (trace_detached_contexts, false, "trace native contexts that are expected to be garbage collected") DEFINE_BOOL_READONLY(verify_heap |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC | DEFINE_BOOL (memory_reducer_respects_frozen_state, false, "don't schedule another GC when we are frozen") DEFINE_BOOL(memory_reducer_favors_memory |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag | DEFINE_BOOL (memory_reducer_for_small_heaps, true, "use memory reducer for small heaps") DEFINE_INT(memory_reducer_gc_count |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled | DEFINE_BOOL (external_memory_accounted_in_global_limit, false, "External memory limits are computed as part of global limits in v8 Heap.") DEFINE_BOOL(gc_speed_uses_counters |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters | DEFINE_INT (heap_growing_percent, 0, "specifies heap growing factor as (1 + heap_growing_percent/100)") DEFINE_BOOL(compact |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics | DEFINE_BOOL (compact_code_space, true, "Perform code space compaction on full collections.") DEFINE_BOOL(compact_on_every_full_gc |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC | DEFINE_BOOL (compact_with_stack, true, "Perform compaction when finalizing a full GC with stack") DEFINE_BOOL(compact_code_space_with_stack |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack | DEFINE_BOOL (shortcut_strings_with_stack, true, "Shortcut Strings during GC with stack") DEFINE_BOOL(stress_compaction |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects | DEFINE_BOOL (stress_compaction_random, false, "Stress GC compaction by selecting random percent of pages as " "evacuation candidates. Overrides stress_compaction.") DEFINE_BOOL(flush_baseline_code |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently | DEFINE_BOOL (flush_bytecode, true, "flush of bytecode when it has not been executed recently") DEFINE_BOOL(flush_code_based_on_time |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age | DEFINE_BOOL (flush_code_based_on_tab_visibility, false, "Flush code when tab goes into the background.") DEFINE_BOOL(use_marking_progress_bar |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active | DEFINE_BOOL (stress_per_context_marking_worklist, false, "Use per-context worklist for marking") DEFINE_BOOL(stress_incremental_marking |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often | DEFINE_BOOL (fuzzer_gc_analysis, false, "prints number of allocations and enables analysis mode for gc " "fuzz testing, e.g. --stress-marking, --stress-scavenge") DEFINE_INT(stress_marking |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and | X (inclusive) percent " "of the regular marking start limit") DEFINE_INT(stress_scavenge |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible | DEFINE_BOOL (parallel_reclaim_unmodified_wrappers, true, "reclaim wrapper objects in parallel") DEFINE_BOOL(gc_experiment_less_compaction |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode | DEFINE_INT (gc_memory_reducer_start_delay_ms, 8000, "Delay before memory reducer start") DEFINE_BOOL(concurrent_marking_high_priority_threads |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking | DEFINE_BOOL (randomize_all_allocations, false, "randomize virtual memory reservations by ignoring any hints " "passed when allocating pages") DEFINE_BOOL(manual_evacuation_candidates_selection |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates | pages (requires --stress_compaction).") DEFINE_BOOL(cppheap_incremental_marking |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap | DEFINE_BOOL (cppheap_concurrent_marking, false, "use concurrent marking for CppHeap") DEFINE_NEG_NEG_IMPLICATION(cppheap_incremental_marking |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking | DEFINE_BOOL (memory_balancer, false, "use membalancer, " "a new heap limit balancing algorithm") DEFINE_FLOAT(memory_balancer_c_value |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses | DEFINE_BOOL (enable_sse4_1, true, "enable use of SSE4.1 instructions if available") DEFINE_BOOL(enable_sse4_2 |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available | DEFINE_BOOL (enable_sahf, true, "enable use of SAHF instruction if available (X64 only)") DEFINE_BOOL(enable_avx_vnni |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available | DEFINE_BOOL (enable_avx_vnni_int8, true, "enable use of AVX-VNNI-INT8 instructions if available") DEFINE_BOOL(enable_popcnt |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available | DEFINE_STRING (arm_arch, ARM_ARCH_DEFAULT, "generate instructions for the selected ARM architecture if " "available: armv6, armv7, armv7+sudiv or armv8") DEFINE_BOOL(force_long_branches |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long | mode (MIPS/PPC only)") DEFINE_BOOL(partial_constant_pool |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant | pools (x64 only)") DEFINE_STRING(sim_arm64_optional_features |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs | DEFINE_BOOL (enable_source_at_csa_bind, false, "Include source information in the binary at CSA bind locations.") DEFINE_BOOL(enable_regexp_unaligned_accesses |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine | DEFINE_BOOL (stress_background_compile, false, "stress test parsing on background") DEFINE_BOOL(concurrent_cache_deserialization |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background | DEFINE_BOOL (merge_background_deserialized_script_with_compilation_cache, true, "After deserializing code cache data on a background thread, merge it into " "an existing Script if one is found in the Isolate compilation cache") DEFINE_BOOL(experimental_embedder_instance_types |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder | DEFINE_STRING (expose_gc_as, nullptr, "expose gc extension under the specified name") DEFINE_BOOL(expose_externalize_string |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension | DEFINE_BOOL (expose_ignition_statistics, false, "expose ignition-statistics extension (requires building with " "v8_enable_ignition_dispatch_counting)") DEFINE_BOOL(builtins_in_stack_traces |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces | DEFINE_BOOL (experimental_stack_trace_frames, false, "enable experimental frames (API/Builtins) and stack trace layout") DEFINE_BOOL(disallow_code_generation_from_strings |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces disallow eval and friends | DEFINE_STRING (expose_cputracemark_as, nullptr, "expose cputracemark extension under the specified name") DEFINE_BOOL(experimental_report_exceptions_from_callbacks |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces disallow eval and friends Notify Api callback about exceptions thrown in Api callbacks | DEFINE_BOOL (allow_unsafe_function_constructor, false, "allow invoking the function constructor without security checks") DEFINE_BOOL(test_small_max_function_context_stub_size |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces disallow eval and friends Notify Api callback about exceptions thrown in Api callbacks enable testing the function context size overflow path by making the maximum size smaller | DEFINE_INT (switch_table_spread_threshold, 3, "allow the jump table used for switch statements to span a range " "of integers roughly equal to this number times the number of " "clauses in the switch") DEFINE_INT(switch_table_min_cases |
Variables | |
false | |
Disallow flags or implications overriding each other abort_on_contradictory_flags | true |
V8_ALLOCATION_FOLDING_BOOL | |
V8_ENABLE_UNCONDITIONAL_WRITE_BARRIERS_BOOL | |
V8_ENABLE_CONSERVATIVE_STACK_SCANNING_BOOL | |
use conservative stack scanning | V8_ENABLE_DIRECT_HANDLE_BOOL |
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger minor_gc_task Enables random stressing of object pinning in | Scavenger |
FUTURE_BOOL | |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation | nullptr |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations maximum cumulative size of bytecode considered for inlining scale factor of bytecode size used to calculate the inlining budget * | KB |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations maximum cumulative size of bytecode considered for inlining scale factor of bytecode size used to calculate the inlining budget maximum bytecode size to be considered for turbofan | optimization |
too high values may cause the compiler to set high thresholds for inlining to as much as possible | max_inlined_bytecode_size_absolute |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for | mksnapshot |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data | DEBUG_BOOL |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to | https |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in | name |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation | speed |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available | space |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent | marking |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage * | MB |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant | none |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for | testing |
#define ARM_ARCH_DEFAULT "armv8" |
Definition at line 172 of file flag-definitions.h.
#define DEFAULT_MAX_POLYMORPHIC_MAP_COUNT 4 |
#define DEFAULT_PERF_BASIC_PROF_PATH "/tmp" |
#define DEFAULT_PERF_PROF_PATH "." |
#define DEFAULT_PROF_SAMPLING_INTERVAL 1000 |
#define DEFAULT_SCAVENGER_MAX_NEW_SPACE_CAPACITY_MB 32 |
#define DEFINE_ALIAS_BOOL | ( | alias, | |
nam ) |
Definition at line 202 of file flag-definitions.h.
#define DEFINE_ALIAS_FLOAT | ( | alias, | |
nam ) |
Definition at line 204 of file flag-definitions.h.
#define DEFINE_ALIAS_INT | ( | alias, | |
nam ) |
Definition at line 203 of file flag-definitions.h.
#define DEFINE_ALIAS_SIZE_T | ( | alias, | |
nam ) |
Definition at line 205 of file flag-definitions.h.
#define DEFINE_ALIAS_STRING | ( | alias, | |
nam ) |
Definition at line 206 of file flag-definitions.h.
#define DEFINE_BOOL | ( | nam, | |
def, | |||
cmt ) |
Definition at line 189 of file flag-definitions.h.
#define DEFINE_BOOL_READONLY | ( | nam, | |
def, | |||
cmt ) |
Definition at line 190 of file flag-definitions.h.
#define DEFINE_DEBUG_BOOL DEFINE_BOOL_READONLY |
Definition at line 212 of file flag-definitions.h.
#define DEFINE_DISABLE_FLAG_IMPLICATION | ( | whenflag, | |
thenflag ) |
Definition at line 146 of file flag-definitions.h.
#define DEFINE_EXPERIMENTAL_FEATURE | ( | nam, | |
cmt ) |
#define DEFINE_FLOAT | ( | nam, | |
def, | |||
cmt ) |
Definition at line 199 of file flag-definitions.h.
#define DEFINE_GENERIC_IMPLICATION | ( | whenflag, | |
statement ) |
Definition at line 130 of file flag-definitions.h.
#define DEFINE_IMPLICATION | ( | whenflag, | |
thenflag ) |
Definition at line 15 of file flag-definitions.h.
#define DEFINE_INT | ( | nam, | |
def, | |||
cmt ) |
Definition at line 194 of file flag-definitions.h.
#define DEFINE_MAYBE_BOOL | ( | nam, | |
cmt ) |
Definition at line 192 of file flag-definitions.h.
#define DEFINE_MIN_VALUE_IMPLICATION | ( | flag, | |
min_value ) |
Definition at line 142 of file flag-definitions.h.
#define DEFINE_NEG_IMPLICATION | ( | whenflag, | |
thenflag ) |
Definition at line 26 of file flag-definitions.h.
#define DEFINE_NEG_NEG_IMPLICATION | ( | whenflag, | |
thenflag ) |
Definition at line 29 of file flag-definitions.h.
#define DEFINE_NEG_VALUE_IMPLICATION | ( | whenflag, | |
thenflag, | |||
value ) |
Definition at line 134 of file flag-definitions.h.
#define DEFINE_NEG_VALUE_VALUE_IMPLICATION | ( | whenflag, | |
whenvalue, | |||
thenflag, | |||
thenvalue ) |
Definition at line 137 of file flag-definitions.h.
#define DEFINE_PERF_PROF_BOOL | ( | nam, | |
cmt ) |
#define DEFINE_PERF_PROF_IMPLICATION | ( | ... | ) |
#define DEFINE_REQUIREMENT | ( | statement | ) |
Definition at line 150 of file flag-definitions.h.
#define DEFINE_SIZE_T | ( | nam, | |
def, | |||
cmt ) |
Definition at line 200 of file flag-definitions.h.
#define DEFINE_SLOW_TRACING_BOOL DEFINE_BOOL_READONLY |
#define DEFINE_STRING | ( | nam, | |
def, | |||
cmt ) |
Definition at line 201 of file flag-definitions.h.
#define DEFINE_UINT | ( | nam, | |
def, | |||
cmt ) |
Definition at line 195 of file flag-definitions.h.
#define DEFINE_UINT64 | ( | nam, | |
def, | |||
cmt ) |
Definition at line 198 of file flag-definitions.h.
#define DEFINE_UINT_READONLY | ( | nam, | |
def, | |||
cmt ) |
Definition at line 196 of file flag-definitions.h.
#define DEFINE_VALUE_IMPLICATION | ( | whenflag, | |
thenflag, | |||
value ) |
Definition at line 122 of file flag-definitions.h.
#define DEFINE_WEAK_IMPLICATION | ( | whenflag, | |
thenflag ) |
Definition at line 20 of file flag-definitions.h.
#define DEFINE_WEAK_NEG_IMPLICATION | ( | whenflag, | |
thenflag ) |
Definition at line 23 of file flag-definitions.h.
#define DEFINE_WEAK_VALUE_IMPLICATION | ( | whenflag, | |
thenflag, | |||
value ) |
Definition at line 126 of file flag-definitions.h.
#define ENABLE_LOG_COLOUR true |
Definition at line 186 of file flag-definitions.h.
#define ENABLE_SPARKPLUG_BY_DEFAULT false |
Definition at line 160 of file flag-definitions.h.
#define FLAG FLAG_FULL |
Definition at line 218 of file flag-definitions.h.
#define FLAG FLAG_READONLY |
Definition at line 218 of file flag-definitions.h.
#define FLAG FLAG_FULL |
Definition at line 218 of file flag-definitions.h.
#define FLAG FLAG_READONLY |
Definition at line 218 of file flag-definitions.h.
#define FLAG FLAG_READONLY |
Definition at line 218 of file flag-definitions.h.
#define FLAG FLAG_FULL |
Definition at line 218 of file flag-definitions.h.
#define FLAG FLAG_READONLY |
Definition at line 218 of file flag-definitions.h.
#define FLAG FLAG_FULL |
Definition at line 218 of file flag-definitions.h.
#define FLAG FLAG_READONLY |
Definition at line 218 of file flag-definitions.h.
#define FLAG_ALIAS | ( | ftype, | |
ctype, | |||
alias, | |||
nam ) |
Definition at line 118 of file flag-definitions.h.
#define FLAG_FULL | ( | ftype, | |
ctype, | |||
nam, | |||
def, | |||
cmt ) |
Definition at line 110 of file flag-definitions.h.
#define FLAG_INPROGRESS_FEATURES | ( | id, | |
description ) |
#define FLAG_READONLY | ( | ftype, | |
ctype, | |||
nam, | |||
def, | |||
cmt ) |
Definition at line 114 of file flag-definitions.h.
#define FLAG_SHIPPING_FEATURES | ( | id, | |
description ) |
#define FLAG_STAGED_FEATURES | ( | id, | |
description ) |
#define FUTURE_BOOL false |
#define HARMONY_INPROGRESS | ( | V | ) |
#define HARMONY_INPROGRESS_BASE | ( | V | ) |
#define HARMONY_SHIPPING | ( | V | ) |
#define HARMONY_STAGED | ( | V | ) |
#define HARMONY_STAGED_BASE | ( | V | ) |
#define JAVASCRIPT_INPROGRESS_FEATURES | ( | V | ) |
#define JAVASCRIPT_INPROGRESS_FEATURES_BASE | ( | V | ) |
#define JAVASCRIPT_SHIPPING_FEATURES | ( | V | ) |
#define JAVASCRIPT_SHIPPING_FEATURES_BASE | ( | V | ) |
#define JAVASCRIPT_STAGED_FEATURES | ( | V | ) |
#define JAVASCRIPT_STAGED_FEATURES_BASE | ( | V | ) |
#define LOG_FLAGS | ( | V | ) |
#define REGEXP_PEEPHOLE_OPTIMIZATION_BOOL true |
#define SET_IMPLICATIONS | ( | V | ) |
#define V8_ALLOCATION_FOLDING_BOOL false |
#define V8_ALLOCATION_SITE_TRACKING_BOOL false |
#define V8_CET_SHADOW_STACK_BOOL false |
#define V8_DISABLE_WRITE_BARRIERS_BOOL false |
Definition at line 430 of file flag-definitions.h.
#define V8_ENABLE_BLACK_ALLOCATED_PAGES_BOOL false |
#define V8_ENABLE_CONSERVATIVE_STACK_SCANNING_BOOL false |
#define V8_ENABLE_DIRECT_HANDLE_BOOL false |
#define V8_ENABLE_DOUBLE_CONST_STORE_CHECK_BOOL false |
#define V8_ENABLE_LOCAL_OFF_STACK_CHECK_BOOL false |
Definition at line 523 of file flag-definitions.h.
#define V8_ENABLE_STICKY_MARK_BITS_BOOL false |
#define V8_ENABLE_TURBOFAN_BOOL false |
Definition at line 1228 of file flag-definitions.h.
#define V8_ENABLE_UNCONDITIONAL_WRITE_BARRIERS_BOOL false |
#define V8_JITLESS_BOOL false |
#define V8_LAZY_SOURCE_POSITIONS_BOOL false |
#define V8_LITE_MODE_BOOL false |
Definition at line 407 of file flag-definitions.h.
#define V8_MINOR_MS_CONCURRENT_MARKING_MIN_CAPACITY_DEFAULT 8 |
#define V8_SHORT_BUILTIN_CALLS_BOOL false |
#define V8_SINGLE_GENERATION_BOOL false |
Definition at line 456 of file flag-definitions.h.
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget whether maglev resets the OSR interrupt budget create additional concurrent optimization jobs maximum levels for nesting child serializers trace the heap broker | ( | reports on missing data | only | ) |
|
inline |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot DEFINE_BOOL | ( | abort_on_bad_builtin_profile_data | , |
false | , | ||
"flag for | mksnapshot, | ||
abort if builtins profile can 't be applied" | ) |
Disallow flags or implications overriding each other abort_on_contradictory_flags DEFINE_BOOL | ( | allow_overwriting_for_next_flag | , |
false | , | ||
"temporary disable flag contradiction to allow overwriting just " "the next flag" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces disallow eval and friends Notify Api callback about exceptions thrown in Api callbacks DEFINE_BOOL | ( | allow_unsafe_function_constructor | , |
false | , | ||
"allow invoking the function constructor without security checks" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics DEFINE_BOOL | ( | compact_code_space | , |
true | , | ||
"Perform code space compaction on full collections." | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC DEFINE_BOOL | ( | compact_with_stack | , |
true | , | ||
"Perform compaction when finalizing a full GC with stack" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads DEFINE_BOOL | ( | concurrent_array_buffer_sweeping | , |
true | , | ||
"concurrently sweep array buffers" | ) |
other heap size generate builtins concurrently on separate threads in mksnapshot DEFINE_BOOL | ( | concurrent_recompilation | , |
true | , | ||
"optimizing hot functions asynchronously on a separate thread" | ) |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms DEFINE_BOOL | ( | concurrent_recompilation_front_running | , |
true | , | ||
"move compile jobs to the front if recompilation is requested " "multiple times" | ) |
refactor address components for immediate indexing DEFINE_BOOL | ( | concurrent_turbo_tracing | , |
false | , | ||
"allow concurrent compilation to happen in combination with " "trace-turbo* flags" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap DEFINE_BOOL | ( | cppheap_concurrent_marking | , |
false | , | ||
"use concurrent marking for CppHeap" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause DEFINE_BOOL | ( | detect_ineffective_gcs_near_heap_limit | , |
true | , | ||
"trigger out-of-memory failure to avoid GC storm near heap limit" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available DEFINE_BOOL | ( | enable_avx_vnni_int8 | , |
true | , | ||
"enable use of AVX-VNNI-INT8 instructions if available" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available DEFINE_BOOL | ( | enable_sahf | , |
true | , | ||
"enable use of SAHF instruction if available (X64 only)" | ) |
Disallow flags or implications overriding each other abort_on_contradictory_flags subclassing support in built in methods DEFINE_BOOL | ( | enable_sharedarraybuffer_per_context | , |
false | , | ||
"enable the SharedArrayBuffer constructor per context" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs DEFINE_BOOL | ( | enable_source_at_csa_bind | , |
false | , | ||
"Include source information in the binary at CSA bind locations." | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses DEFINE_BOOL | ( | enable_sse4_1 | , |
true | , | ||
"enable use of SSE4.1 instructions if available" | ) |
Disallow flags or implications overriding each other DEFINE_BOOL | ( | exit_on_contradictory_flags | , |
false | , | ||
"Exit with return code 0 on contradictory flags." | ) |
DEFINE_BOOL | ( | experimental | , |
false | , | ||
"Indicates that V8 is running with experimental features enabled. " "This flag is typically not set explicitly but instead enabled as " "an implication of other flags which enable experimental features." | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces DEFINE_BOOL | ( | experimental_stack_trace_frames | , |
false | , | ||
"enable experimental frames (API/Builtins) and stack trace layout" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension DEFINE_BOOL | ( | expose_ignition_statistics | , |
false | , | ||
"expose ignition-statistics extension (requires building with " "v8_enable_ignition_dispatch_counting)" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled DEFINE_BOOL | ( | external_memory_accounted_in_global_limit | , |
false | , | ||
"External memory limits are computed as part of global limits in v8 Heap." | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently DEFINE_BOOL | ( | flush_bytecode | , |
true | , | ||
"flush of bytecode when it has not been executed recently" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age DEFINE_BOOL | ( | flush_code_based_on_tab_visibility | , |
false | , | ||
"Flush code when tab goes into the background." | ) |
Implies all staged features that we want to ship in the not too far future DEFINE_BOOL | ( | force_emit_interrupt_budget_checks | , |
false | , | ||
"force emit tier-up logic from all non-turbofan | code, | ||
even if it " "is the top enabled tier" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often DEFINE_BOOL | ( | fuzzer_gc_analysis | , |
false | , | ||
"prints number of allocations and enables analysis mode for gc " "fuzz | testing, | ||
e.g. --stress- | marking, | ||
--stress-scavenge" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed DEFINE_BOOL | ( | incremental_marking_start_user_visible | , |
true | , | ||
"Starts incremental marking with kUserVisible priority." | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval DEFINE_BOOL | ( | lazy_new_space_shrinking | , |
false | , | ||
"Enables the lazy new space shrinking strategy" | ) |
DEFINE_BOOL | ( | lite_mode | , |
V8_LITE_MODE_BOOL | , | ||
"enables trade-off of performance for memory savings" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder DEFINE_BOOL | ( | log_or_trace_osr | , |
false | , | ||
"internal helper | flag, | ||
please use --trace-osr instead." | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread DEFINE_BOOL | ( | maglev_build_code_on_background | , |
true | , | ||
"Generate code on background thread" | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code DEFINE_BOOL | ( | maglev_cons_string_elision | , |
false | , | ||
"Native support for cons strings and their elision in maglev." | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background DEFINE_BOOL | ( | maglev_destroy_on_background | , |
true | , | ||
"Destroy compilation jobs on background thread" | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler DEFINE_BOOL | ( | maglev_loop_peeling | , |
true | , | ||
"enable loop peeling in the maglev optimizing compiler" | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions minimum frequency for inlining reuse stack slots in the maglev optimizing compiler DEFINE_BOOL | ( | maglev_untagged_phis | , |
true | , | ||
"enable phi untagging in the maglev optimizing compiler" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking DEFINE_BOOL | ( | memory_balancer | , |
false | , | ||
"use | membalancer, | ||
" "a new heap limit balancing algorithm" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag DEFINE_BOOL | ( | memory_reducer_for_small_heaps | , |
true | , | ||
"use memory reducer for small heaps" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC DEFINE_BOOL | ( | memory_reducer_respects_frozen_state | , |
false | , | ||
"don't schedule another GC when we are frozen" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background DEFINE_BOOL | ( | merge_background_deserialized_script_with_compilation_cache | , |
true | , | ||
"After deserializing code cache data on a background | thread, | ||
merge it into " "an existing Script if one is found in the Isolate compilation cache" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping DEFINE_BOOL | ( | parallel_pointer_update | , |
true | , | ||
"use parallel pointer update during compaction" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible DEFINE_BOOL | ( | parallel_reclaim_unmodified_wrappers | , |
true | , | ||
"reclaim wrapper objects in parallel" | ) |
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger minor_gc_task Enables random stressing of object pinning in such that each GC would randomly pick a subset of the precise references to treat conservatively Objects reachable from handles during scavenge will be pinned and won t move DEFINE_BOOL | ( | precise_object_pinning | , |
false | , | ||
"Objects reachable from handles during GC will be pinned and won't move." | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps DEFINE_BOOL | ( | profile_guided_optimization_for_empty_feedback_vector | , |
true | , | ||
"profile guided optimization for empty feedback vector" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking DEFINE_BOOL | ( | randomize_all_allocations | , |
false | , | ||
"randomize virtual memory reservations by ignoring any hints " "passed when allocating pages" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed DEFINE_BOOL | ( | reopt_after_lazy_deopts | , |
true | , | ||
"Immediately re-optimize code after some lazy deopts" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack DEFINE_BOOL | ( | shortcut_strings_with_stack | , |
true | , | ||
"Shortcut Strings during GC with stack" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine DEFINE_BOOL | ( | stress_background_compile | , |
false | , | ||
"stress test parsing on background" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects DEFINE_BOOL | ( | stress_compaction_random | , |
false | , | ||
"Stress GC compaction by selecting random percent of pages as " "evacuation candidates. Overrides stress_compaction." | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active DEFINE_BOOL | ( | stress_per_context_marking_worklist | , |
false | , | ||
"Use per-context worklist for marking" | ) |
DEFINE_BOOL | ( | stress_turbo_late_spilling | , |
false | , | ||
"optimize placement of all spill | instructions, | ||
not just loop-top phis" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected DEFINE_BOOL | ( | trace_detached_contexts | , |
false | , | ||
"trace native contexts that are expected to be garbage collected" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values DEFINE_BOOL | ( | trace_environment_liveness | , |
false | , | ||
"trace liveness of local variable slots" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections DEFINE_BOOL | ( | trace_gc | , |
false | , | ||
"print one trace line following each garbage collection" | ) |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget whether maglev resets the OSR interrupt budget create additional concurrent optimization jobs maximum levels for nesting child serializers DEFINE_BOOL | ( | trace_heap_broker_verbose | , |
false | , | ||
"trace the heap broker verbosely (all reports)" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking DEFINE_BOOL | ( | track_gc_object_stats | , |
false | , | ||
"track object counts and memory usage" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible DEFINE_BOOL | ( | turbo_inline_array_builtins | , |
true | , | ||
"inline array builtins in TurboFan code" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan DEFINE_BOOL | ( | turbo_instruction_scheduling | , |
false | , | ||
"enable instruction scheduling in TurboFan" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers DEFINE_BOOL | ( | turbo_optimize_math_minmax | , |
true | , | ||
"optimize call math.min/max with double array" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination DEFINE_BOOL | ( | turbo_profiling_verbose | , |
false | , | ||
"enable basic block profiling in | TurboFan, | ||
and include each " "function 's schedule and disassembly in the output" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks DEFINE_BOOL | ( | turbo_stats_nvp | , |
false | , | ||
"print TurboFan statistics in machine-readable format" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering DEFINE_BOOL | ( | turboshaft_enable_debug_features | , |
false | , | ||
"enables Turboshaft's | DebugPrint, | ||
StaticAssert and " "CheckTurboshaftTypeOf operations" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS DEFINE_BOOL | ( | turboshaft_loop_unrolling | , |
true | , | ||
"enable Turboshaft's loop unrolling" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future DEFINE_BOOL | ( | typed_array_length_loading | , |
true | , | ||
"Enable specializing loading the TypedArray length in Maglev / Turbofan" | ) |
DEFINE_BOOL_READONLY | ( | disable_write_barriers | , |
V8_DISABLE_WRITE_BARRIERS_BOOL | , | ||
"disable write barriers when GC is non-incremental " "and heap contains single generation." | ) |
DEFINE_BOOL_READONLY | ( | local_off_stack_check | , |
V8_ENABLE_LOCAL_OFF_STACK_CHECK_BOOL | , | ||
"check for off-stack allocation of v8::Local" | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future DEFINE_BOOL_READONLY | ( | optimize_on_next_call_optimizes_to_maglev | , |
false | , | ||
"make OptimizeFunctionOnNextCall optimize to maglev instead of turbofan" | ) |
DEFINE_BOOL_READONLY | ( | single_generation | , |
V8_SINGLE_GENERATION_BOOL | , | ||
"allocate all objects from young generation to old generation" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode DEFINE_BOOL_READONLY | ( | turbo_compress_frame_translations | , |
false | , | ||
"compress deoptimization frame translations (experimental)" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan DEFINE_BOOL_READONLY | ( | turbo_typer_hardening | , |
true | , | ||
"extra bounds checks to protect against some known typer " "mismatch exploit techniques (best effort)" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps DEFINE_BOOL_READONLY | ( | turboshaft_trace_emitted | , |
false | , | ||
"trace emitted Turboshaft instructions" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo DEFINE_DISABLE_FLAG_IMPLICATION | ( | fuzzing_and_concurrent_recompilation | , |
trace_turbo_graph | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled DEFINE_DISABLE_FLAG_IMPLICATION | ( | fuzzing_and_concurrent_recompilation | , |
trace_turbo_reduction | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority DEFINE_EXPERIMENTAL_FEATURE | ( | cppgc_young_generation | , |
"run young generation garbage collections in Oilpan" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape DEFINE_EXPERIMENTAL_FEATURE | ( | maglev_object_tracking | , |
"track object changes to avoid escaping them" | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions minimum frequency for inlining reuse stack slots in the maglev optimizing compiler enable phi untagging to hoist untagging of osr values DEFINE_EXPERIMENTAL_FEATURE | ( | maglev_speculative_hoist_phi_untagging | , |
"enable phi untagging to hoist untagging of loop phi inputs (could " "still cause deopt loops)" | ) |
use conservative stack scanning use direct handles with conservative stack scanning DEFINE_EXPERIMENTAL_FEATURE | ( | scavenger_conservative_object_pinning | , |
"Objects reachable from the native stack during " "scavenge will be pinned and " "won't move." | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions minimum frequency for inlining reuse stack slots in the maglev optimizing compiler enable phi untagging to hoist untagging of osr values enable Maglev non eager inlining DEFINE_EXPERIMENTAL_FEATURE | ( | turbolev_non_eager_inlining | , |
"enable Turbolev non-eager inlining" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation DEFINE_EXPERIMENTAL_FEATURE | ( | turboshaft_typed_optimizations | , |
"enable an additional Turboshaft phase that " "performs optimizations based on type information" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination DEFINE_EXPERIMENTAL_FEATURE | ( | turboshaft_wasm_in_js_inlining | , |
"inline Wasm code into JS functions via Turboshaft (instead of via " "TurboFan). Only the Wasm code is inlined in | Turboshaft, | ||
the JS-to-Wasm " "wrappers are still inlined in TurboFan. For controlling whether to inline " "at | all, | ||
see --turbo-inline-js-wasm-calls." | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage DEFINE_GENERIC_IMPLICATION | ( | trace_zone_stats | , |
TracingFlags::zone_stats. | store v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount DEFINE_GENERIC_IMPLICATION | ( | trace_zone_type_stats | , |
TracingFlags::zone_stats. | store v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE ) |
use conservative stack scanning DEFINE_IMPLICATION | ( | conservative_stack_scanning | , |
scavenger_conservative_object_pinning | ) |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget whether maglev resets the OSR interrupt budget create additional concurrent optimization jobs DEFINE_IMPLICATION | ( | stress_concurrent_inlining_attach_code | , |
stress_concurrent_inlining | ) |
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger DEFINE_IMPLICATION | ( | stress_scavenger_conservative_object_pinning | , |
scavenger_conservative_object_pinning | ) |
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger minor_gc_task Enables random stressing of object pinning in such that each GC would randomly pick a subset of the precise references to treat conservatively DEFINE_IMPLICATION | ( | stress_scavenger_conservative_object_pinning_random | , |
stress_scavenger_conservative_object_pinning | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking DEFINE_IMPLICATION | ( | turbo_stress_instruction_scheduling | , |
turbo_instruction_scheduling | ) |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation DEFINE_INT | ( | concurrent_recompilation_queue_length | , |
8 | , | ||
"the length of the concurrent compilation queue" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory DEFINE_INT | ( | ephemeron_fixpoint_iterations | , |
10 | , | ||
"number of fixpoint iterations it takes to switch to linear " "ephemeron algorithm" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode DEFINE_INT | ( | gc_memory_reducer_start_delay_ms | , |
8000 | , | ||
"Delay before memory reducer start" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters DEFINE_INT | ( | heap_growing_percent | , |
0 | , | ||
"specifies heap growing factor as (1 + heap_growing_percent/100)" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization DEFINE_INT | ( | invocation_count_for_maglev_with_delay | , |
600 | , | ||
"invocation count for maglev for functions which according to " "profile_guided_optimization are likely to deoptimize before " "reaching this invocation count" | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler DEFINE_INT | ( | maglev_loop_peeling_max_size_cumulative | , |
900 | , | ||
"max cumulative size for loop peeling in the maglev optimizing compiler" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations DEFINE_INT | ( | max_inlined_bytecode_size | , |
460 | , | ||
"maximum size of bytecode for a single inlining" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations maximum cumulative size of bytecode considered for inlining DEFINE_INT | ( | max_inlined_bytecode_size_absolute | , |
4600 | , | ||
"maximum absolute size of bytecode considered for inlining" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations maximum cumulative size of bytecode considered for inlining scale factor of bytecode size used to calculate the inlining budget DEFINE_INT | ( | max_inlined_bytecode_size_small | , |
27 | , | ||
"maximum size of bytecode considered for small function inlining" | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev DEFINE_INT | ( | max_maglev_inline_depth | , |
1 | , | ||
"max depth of functions that Maglev will inline excl. small functions" | ) |
|
inline |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions DEFINE_INT | ( | max_maglev_inlined_bytecode_size_small | , |
27 | , | ||
"maximum size of bytecode considered for small function inlining" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces disallow eval and friends Notify Api callback about exceptions thrown in Api callbacks enable testing the function context size overflow path by making the maximum size smaller DEFINE_INT | ( | switch_table_spread_threshold | , |
3 | , | ||
"allow the jump table used for switch statements to span a range " "of integers roughly equal to this number times the number of " "clauses in the switch" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation DEFINE_NEG_NEG_IMPLICATION | ( | concurrent_recompilation | , |
fuzzing_and_concurrent_recompilation | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces DEFINE_SIZE_T | ( | max_semi_space_size | , |
0 | , | ||
"max size of a semi-space | in MBytes, | ||
the new space consists of " "two semi-spaces" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator DEFINE_SLOW_TRACING_BOOL | ( | trace_representation | , |
false | , | ||
"trace representation types" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer DEFINE_SLOW_TRACING_BOOL | ( | trace_turbo_jt | , |
false | , | ||
"trace TurboFan's jump threading" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence DEFINE_SLOW_TRACING_BOOL | ( | trace_turbo_loop | , |
false | , | ||
"trace TurboFan's loop optimizations" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available DEFINE_STRING | ( | arm_arch | , |
ARM_ARCH_DEFAULT | , | ||
"generate instructions for the selected ARM architecture if " "available: | armv6, | ||
armv7 | , | ||
armv7+sudiv or armv8" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs DEFINE_STRING | ( | csa_trap_on_node | , |
nullptr | , | ||
"trigger break point when a node with given id is created in " "given stub. The format is: | StubName, | ||
NodeId" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data DEFINE_STRING | ( | dump_builtins_hashes_to_file | , |
nullptr | , | ||
"flag for | mksnapshot, | ||
dump CSA builtins graph hashes to this file" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces disallow eval and friends DEFINE_STRING | ( | expose_cputracemark_as | , |
nullptr | , | ||
"expose cputracemark extension under the specified name" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder DEFINE_STRING | ( | expose_gc_as | , |
nullptr | , | ||
"expose gc extension under the specified name" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation DEFINE_STRING | ( | trace_turbo_file_prefix | , |
"turbo" | , | ||
"trace turbo graph to a file with given prefix" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev DEFINE_STRING | ( | trace_turbo_path | , |
nullptr | , | ||
"directory to dump generated TurboFan IR to" | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses DEFINE_STRING | ( | turbo_verify_machine_graph | , |
nullptr | , | ||
"verify TurboFan machine graph before instruction selection" | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites DEFINE_UINT | ( | concurrent_maglev_max_threads | , |
2 | , | ||
"max number of threads that concurrent Maglev can use (0 for unbounded)" | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects DEFINE_UINT | ( | minor_gc_task_trigger | , |
80 | , | ||
"minor GC task trigger in percent of the current heap limit" | ) |
|
inline |
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger minor_gc_task DEFINE_VALUE_IMPLICATION | ( | stress_scavenger_conservative_object_pinning | , |
scavenger_max_new_space_capacity_mb | , | ||
1u | ) |
|
virtual |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget DEFINE_WEAK_VALUE_IMPLICATION | ( | maglev_overwrite_budget | , |
invocation_count_for_turbofan | , | ||
10000 | ) |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result whether maglev resets the interrupt budget whether maglev resets the OSR interrupt budget DEFINE_WEAK_VALUE_IMPLICATION | ( | maglev_overwrite_osr_budget | , |
invocation_count_for_osr | , | ||
800 | ) |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can create additional concurrent optimization jobs but throw away result DEFINE_WEAK_VALUE_IMPLICATION | ( | stress_concurrent_inlining | , |
invocation_count_for_turbofan | , | ||
150 | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for max loop size for loop peeling in the maglev optimizing compiler Generate deopt data on background thread maglev_deopt_data_on_background Inline CallApiCallback builtin into generated code Recursively pretenure values which are stored into pretenured allocation sites use high priority compiler threads for concurrent Maglev max depth of functions that Maglev will incl small functions maximum cumulative size of bytecode considered for inlining excl small functions minimum frequency for inlining DEFINE_WEAK_VALUE_IMPLICATION | ( | turbofan | , |
max_maglev_inlined_bytecode_size_cumulative | , | ||
920 | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this file | ( | requires that V8 was built with | v8_enable_builtins_profiling = true | ) |
other heap size flags | ( | e.g. | initial_heap_size | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg graph | ( | for C1 | visualizer | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the heap | ( | in | Mbytes | ) |
too high values may cause the compiler to hit | ( | release | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near jumps | ( | ia32 | , |
x64 | ) |
Implies all staged features that we want to ship in the not too far future enable maglev features that we want to ship in the not too far future enable inlining in the maglev optimizing compiler enable aggressive optimizations for loops | ( | loop | SPeeling | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long mode | ( | MIPS/PPC | only | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional optimizations | ( | especially load- | elimination | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates pages | ( | requires -- | stress_compaction | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant pools | ( | x64 | only | ) |
|
override |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi space | ( | in | MBytes | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats store | ( | v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE | ) |
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run time | ( | x64 | only | ) |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use Turbolev | ( | ≈ Maglev+Turboshaft | combined | ) |
other heap size generate builtins concurrently on separate threads in mksnapshot track concurrent recompilation artificial compilation delay in ms max number of threads that concurrent Turbofan can use | ( | 0 for | unbounded | ) |
|
new |
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data DEBUG_BOOL |
Definition at line 1445 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces disallow eval and friends Notify Api callback about exceptions thrown in Api callbacks false |
Definition at line 238 of file flag-definitions.h.
FUTURE_BOOL |
Definition at line 534 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to https |
Definition at line 1478 of file flag-definitions.h.
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations maximum cumulative size of bytecode considered for inlining scale factor of bytecode size used to calculate the inlining budget * KB |
Definition at line 1365 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent marking |
Definition at line 2162 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible max_inlined_bytecode_size_absolute |
Definition at line 1376 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage * MB |
Definition at line 2196 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for mksnapshot |
Definition at line 1440 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in name |
Definition at line 2085 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant none |
Definition at line 2421 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination nullptr |
Definition at line 1262 of file flag-definitions.h.
refactor address components for immediate indexing make OptimizeMaglevOnNextCall optimize to turbofan instead of maglev filter for tracing turbofan compilation trace turbo cfg trace TurboFan s graph trimmer trace TurboFan s control equivalence trace TurboFan s register allocator trace stack load store counters for optimized code in run fuzzing &&concurrent_recompilation trace_turbo trace_turbo_scheduled trace_turbo_stack_accesses verify TurboFan machine graph of code stubs enable FixedArray bounds checks print TurboFan statistics of wasm compilations maximum cumulative size of bytecode considered for inlining scale factor of bytecode size used to calculate the inlining budget maximum bytecode size to be considered for turbofan optimization |
Definition at line 1367 of file flag-definitions.h.
use conservative stack scanning use direct handles with conservative stack scanning Treat some precise references as conservative references to stress test object pinning in Scavenger minor_gc_task Enables random stressing of object pinning in Scavenger |
Definition at line 501 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available space |
Definition at line 2129 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation speed |
Definition at line 2122 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for testing |
Definition at line 2422 of file flag-definitions.h.
too high values may cause the compiler to set high thresholds for inlining to as much as possible avoid inlined allocation of objects that cannot escape trace load stores from virtual maglev objects use TurboFan fast string builder analyze liveness of environment slots and zap dead values trace TurboFan load elimination emit data about basic block usage in builtins to this enable builtin reordering when run mksnapshot flag for emit warnings when applying builtin profile data verify register allocation in TurboFan randomly schedule instructions to stress dependency tracking enable store store elimination in TurboFan rewrite far to near simulate GC compiler thread race related to allow float parameters to be passed in simulator mode JS Wasm Run additional turbo_optimize_inlined_js_wasm_wrappers enable experimental feedback collection in generic lowering enable Turboshaft s WasmLoadElimination enable Turboshaft s low level load elimination for JS enable Turboshaft s escape analysis for string concatenation use enable Turbolev features that we want to ship in the not too far future trace individual Turboshaft reduction steps trace intermediate Turboshaft reduction steps invocation count threshold for early optimization Enables optimizations which favor memory size over execution speed Enables sampling allocation profiler with X as a sample interval min size of a semi the new space consists of two semi spaces max size of the Collect garbage after Collect garbage after keeps maps alive for< n > old space garbage collections print one detailed trace line in allocation gc speed threshold for starting incremental marking via a task in percent of available threshold for starting incremental marking immediately in percent of available Use a single schedule for determining a marking schedule between JS and C objects schedules the minor GC task with kUserVisible priority max worker number of concurrent for NumberOfWorkerThreads start background threads that allocate memory concurrent_array_buffer_sweeping use parallel threads to clear weak refs in the atomic pause trace progress of the incremental marking trace object counts and memory usage report a tick only when allocated zone memory changes by this amount TracingFlags::gc_stats TracingFlags::gc_stats track native contexts that are expected to be garbage collected verify heap pointers before and after GC memory reducer runs GC with ReduceMemoryFootprint flag Maximum number of memory reducer GCs scheduled Old gen GC speed is computed directly from gc tracer counters Perform compaction on full GCs based on V8 s default heuristics Perform compaction on every full GC Perform code space compaction when finalizing a full GC with stack Stress GC compaction to flush out bugs with moving objects flush of baseline code when it has not been executed recently Use time base code flushing instead of age Use a progress bar to scan large objects in increments when incremental marking is active force incremental marking for small heaps and run it more often force marking at random points between and force scavenge at random points between and reclaim otherwise unreachable unmodified wrapper objects when possible less compaction in non memory reducing mode use high priority threads for concurrent Marking Test mode only flag It allows an unit test to select evacuation candidates use incremental marking for CppHeap cppheap_concurrent_marking c value for membalancer A special constant to balance between memory and space tradeoff The smaller the more memory it uses enable use of SSE4 instructions if available enable use of AVX VNNI instructions if available enable use of POPCNT instruction if available force all emitted branches to be in long enable use of partial constant enable optional features on the simulator for enable mitigation for Intel JCC erratum on affected CPUs enable unaligned accesses for the regexp engine enable deserializing code caches on background enable type checks based on instance types provided by the embedder expose externalize string extension show built in functions in stack traces disallow eval and friends true |
Definition at line 367 of file flag-definitions.h.
V8_ALLOCATION_FOLDING_BOOL |
Definition at line 423 of file flag-definitions.h.
V8_ENABLE_CONSERVATIVE_STACK_SCANNING_BOOL |
Definition at line 469 of file flag-definitions.h.
use conservative stack scanning V8_ENABLE_DIRECT_HANDLE_BOOL |
Definition at line 480 of file flag-definitions.h.
V8_ENABLE_UNCONDITIONAL_WRITE_BARRIERS_BOOL |
Definition at line 450 of file flag-definitions.h.